molecules-logo

Journal Browser

Journal Browser

Functional Nanomaterials for Food Safety and Biomedicine Analysis Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Applied Chemistry".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 1372

Special Issue Editor

Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
Interests: porous nanomaterials; chemo-/bio-sensors; nanozymes; electrochemistry and electrochemiluminescence; drug delivery systems; food analyses; biomedical analyses

Special Issue Information

Dear Colleagues,

Functional nanomaterials have unique optical, electrical, magnetic, and catalytic functions and have shown transformative potential in food safety and biomedicine analysis.

Nanotechnology is revolutionizing food safety by introducing highly sensitive and specific detection methods. Functional nanomaterial-based sensors are employed for detecting trace amounts of foodborne pathogens, toxins, pesticides, and contaminants in real-time, significantly improving food monitoring processes. In biomedical analysis, functional nanomaterials offer tremendous potential in the development of advanced biosensors for the rapid and sensitive detection of drugs and biomolecules such as glucose, cholesterol, DNA, proteins, and enzymes, facilitating point-of-care testing and early disease diagnosis.

This Special Issue, entitled “Functional Nanomaterials for Food safety and Biomedicine Analysis Applications”, aims to collate the most recent research that focuses on the exploration of novel functional nanomaterials and their applications in food and biomedicine analysis applications. Both review articles and research papers are welcome to be submitted to this Special Issue.

Dr. Fengna Xi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • functional nanomaterials
  • biosensors
  • food safety
  • biomedicine analysis
  • disease diagnosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5129 KiB  
Article
Enhanced Electrochemiluminescence of Luminol and-Dissolved Oxygen by Nanochannel-Confined Au Nanomaterials for Sensitive Immunoassay of Carcinoembryonic Antigen
by Weibin Li, Ruliang Yu and Fengna Xi
Molecules 2024, 29(20), 4880; https://doi.org/10.3390/molecules29204880 - 15 Oct 2024
Cited by 2 | Viewed by 1187
Abstract
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced [...] Read more.
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced ECL signal boosted by nanochannel-confined Au nanomaterial, which enables sensitive detection of the tumor biomarker—carcinoembryonic antigen (CEA). Vertically-ordered mesoporous silica film (VMSF) with a nanochannel array and amine groups was rapidly grown on a simple and low-cost indium tin oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. Au nanomaterials were confined in situ on the VMSF through electrodeposition, which catalyzed both the conversion of dissolved oxygen (O2) to reactive oxygen species (ROS) and the oxidation of a luminol emitter and improved the electrode active surface. The ECL signal was enhanced fivefold after Au nanomaterial deposition. The recognitive interface was fabricated by covalent immobilization of the CEA antibody on the outer surface of the VMSF, followed with the blocking of non-specific binding sites. In the presence of CEA, the formed immunocomplex reduced the diffusion of the luminol emitter, resulting in the reduction of the ECL signal. Based on this mechanism, the constructed immunosensor was able to provide sensitive detection of CEA ranging from 1 pg·mL−1 to 100 ng·mL−1 with a low limit of detection (LOD, 0.37 pg·mL−1, S/N = 3). The developed immunosensor exhibited high selectivity and good stability. ECL determination of CEA in fetal bovine serum was achieved. Full article
Show Figures

Figure 1

Back to TopTop