molecules-logo

Journal Browser

Journal Browser

Innovative Materials and Methods for the Removal of Pollutants from the Environment (2nd Edition)

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Green Chemistry".

Deadline for manuscript submissions: 15 December 2024 | Viewed by 6792

Special Issue Editors


E-Mail Website
Guest Editor
Department of Science and Technological Innovation, University of Eastern Piedmont, 1920133 Milano, Italy
Interests: development of innovative materials for the catalytic abatement of toxic molecules; novel catalysts for green processes; optimization of porous sorbents for CO2 capture and/or water decontamination; novel materials for the production of energy through processes with low environmental impact; preparation of inorganic and hybrid organic-inorganic additives for polymer nanocomposites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
Interests: zirconium phosphate based materials; treatment of wastewater
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

After the positive feedback of the first edition and the publication of the Special Issue reprint book (https://www.mdpi.com/books/pdfview/book/4277), we are pleased to invite you to contribute to the Second Edition of the Special Issue on “Innovative Materials and Methods for the Removal of Pollutants from the Environment”.

Environmental issues, especially those concerning the removal of the different pollutants, need a growing commitment by scientists for the development of more effective and sustainable processes. In this Second Edition, researchers are encouraged to share with the scientific community their most recent results on material synthesis and processes for the depollution of air, water and soil.

Following the footsteps of the First Edition, contributions on novel applications of inorganic, organic, or hybrid materials with porous or layered structures for the removal of pollutants through adsorption processes and/or (catalytic) transformation of noxious compounds into species with reduced environmental impact are strongly encouraged, as well as those concerning the removal and/or transformation of emerging contaminants, such as pesticides or pharmaceuticals, industrial chemicals, surfactants, and personal care products.

Last but not least, characterisation methods for and investigations on pollutant removal processes (with applications to synthetic and real effluents), via experimental and theoretical techniques, will be among the key topics of this Second Edition.

Dr. Chiara Bisio
Dr. Monica Pica
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • environmental depollution
  • adsorption processes
  • catalytic decontamination
  • porous and layered materials
  • characterization methods

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4498 KiB  
Article
The Mechanism of Aniline Blue Degradation by Short-Chain Dehydrogenase (SDRz) in Comamonas testosteroni
by Chuanzhi Zhang, Yong Huang, Jiaxin He, Lei He, Jinyuan Zhang, Lijing Yu, Elshan Musazade, Edmund Maser, Guangming Xiong, Miao Xu and Liquan Guo
Molecules 2024, 29(22), 5405; https://doi.org/10.3390/molecules29225405 - 15 Nov 2024
Viewed by 547
Abstract
Dye wastewater pollution, particularly from persistent and toxic polycyclic organic pollutants, such as aniline blue, poses a significant environmental challenge. Aniline blue, a triphenylmethane dye widely used in the textile, leather, paper, and pharmaceutical industries, is notoriously difficult to treat owing to its [...] Read more.
Dye wastewater pollution, particularly from persistent and toxic polycyclic organic pollutants, such as aniline blue, poses a significant environmental challenge. Aniline blue, a triphenylmethane dye widely used in the textile, leather, paper, and pharmaceutical industries, is notoriously difficult to treat owing to its complex structure and potential for bioaccumulation. In this study, we explored the capacity of Comamonas testosteroni (CT1) to efficiently degrade aniline blue, focusing on the underlying enzymatic mechanisms and degradation pathways. Through prokaryotic transcriptome analysis, we identified a significantly upregulated short-chain dehydrogenase (SDRz) gene (log2FC = 2.11, p < 0.05) that plays a crucial role in the degradation process. The SDRz enzyme possessed highly conserved motifs and a typical short-chain dehydrogenase structure. Functional validation using an SDRz-knockout strain (CT-ΔSDRz) and an SDRz-expressioning strains (E-SDRz) confirmed that SDRz is essential for aniline blue degradation. The knockout strain CT-ΔSDRz exhibited a 1.27-fold reduction in the degradation efficiency, compared to CT1 strain after 12 h; while the expression strain E-SDRz showed a 1.24-fold increase compared to Escherichia coli DH5α after 12 h. Recombinant SDRz (rSDRz) was successfully produced, showing significant enzymatic activity (1.267 ± 0.04 mmol·L−1·min−1 protein), with kinetic parameters Vmax = 2.870 ± 0.0156 mmol·L⁻1·min⁻1 protein and Km = 1.805 ± 0.0128 mM·mL−1. Under optimal conditions, the rSDRz achieved a degradation efficiency of 62.17% for aniline blue. Gas chromatography–mass spectrometry (GC-MS) analysis identified several intermediate metabolites in the degradation pathway, including benzeneacetaldehyde, a, a-diphenyl, 2-amino-4-methylbenzophenone, benzene, 1-dimethylamino-4-phenylmethyl, benzenesulfonic acid, methyl ester, further elucidating the biodegradation mechanism. These findings highlight SDRz as a critical enzyme in the biodegradation of aniline blue, offering valuable insights and a robust theoretical foundation for developing advanced bioremediation strategies to address dye wastewater pollution. Full article
Show Figures

Figure 1

13 pages, 4348 KiB  
Article
Layered Double Hydroxides as Systems for Capturing Small-Molecule Air Pollutants: A Density Functional Theory Study
by Elaheh Mohebbi, Cristina Minnelli, Eleonora Pavoni, Laura Sisti, Emiliano Laudadio and Pierluigi Stipa
Molecules 2024, 29(21), 4996; https://doi.org/10.3390/molecules29214996 - 22 Oct 2024
Viewed by 593
Abstract
Air pollutants are usually formed by easily spreading small molecules, representing a severe problem for human health, especially in urban centers. Despite the efforts to stem their diffusion, many diseases are still associated with exposure to these molecules. The present study focuses on [...] Read more.
Air pollutants are usually formed by easily spreading small molecules, representing a severe problem for human health, especially in urban centers. Despite the efforts to stem their diffusion, many diseases are still associated with exposure to these molecules. The present study focuses on modeling and designing two-dimensional systems called Layered Double Hydroxides (LDHs), which can potentially trap these molecules. For this purpose, a Density Functional Theory (DFT) approach has been used to study the role of the elemental composition of LDHs, the type of counterion, and the ability of these systems to intercalate NO2 and SO2 between the LDH layers. The results demonstrated how the counterion determines the different possible spacing between the layers, modulating the internalization capacity of pollutants and determining the stability degree of the system for a long-lasting effect. The variations in structural properties, the density of states (DOS), and the description of the charge transfer have been reported, thus allowing the investigation of aspects that are difficult to observe from an experimental point of view and, at the same time, providing essential details for the effective development of systems that can counteract the spread of air pollutants. Full article
Show Figures

Graphical abstract

15 pages, 3036 KiB  
Article
Self-Assembly of Three-Dimensional Hyperbranched Magnetic Composites and Application in High-Turbidity Water Treatment
by Yuan Zhao, Qianlong Fan, Yinhua Liu, Junhui Liu, Mengcheng Zhu, Xuan Wang and Ling Shen
Molecules 2024, 29(15), 3639; https://doi.org/10.3390/molecules29153639 - 1 Aug 2024
Viewed by 777
Abstract
In order to improve dispersibility, polymerization characteristics, chemical stability, and magnetic flocculation performance, magnetic Fe3O4 is often assembled with multifarious polymers to realize a functionalization process. Herein, a typical three-dimensional configuration of hyperbranched amino acid polymer (HAAP) was employed to [...] Read more.
In order to improve dispersibility, polymerization characteristics, chemical stability, and magnetic flocculation performance, magnetic Fe3O4 is often assembled with multifarious polymers to realize a functionalization process. Herein, a typical three-dimensional configuration of hyperbranched amino acid polymer (HAAP) was employed to assemble it with Fe3O4, in which we obtained three-dimensional hyperbranched magnetic amino acid composites (Fe3O4@HAAP). The characterization of the Fe3O4@HAAP composites was analyzed, for instance, their size, morphology, structure, configuration, chemical composition, charged characteristics, and magnetic properties. The magnetic flocculation of kaolin suspensions was conducted under different Fe3O4@HAAP dosages, pHs, and kaolin concentrations. The embedded assembly of HAAP with Fe3O4 was constructed by the N–O bond according to an X-ray photoelectron energy spectrum (XPS) analysis. The characteristic peaks of –OH (3420 cm−1), C=O (1728 cm−1), Fe–O (563 cm−1), and N–H (1622 cm−1) were observed in the Fourier transform infrared spectrometer (FTIR) spectra of Fe3O4@HAAP successfully. In a field emission scanning electron microscope (FE-SEM) observation, Fe3O4@HAAP exhibited a lotus-leaf-like morphological structure. A vibrating sample magnetometer (VSM) showed that Fe3O4@HAAP had a relatively low magnetization (Ms) and magnetic induction (Mr); nevertheless, the ferromagnetic Fe3O4@HAAP could also quickly respond to an external magnetic field. The isoelectric point of Fe3O4@HAAP was at 8.5. Fe3O4@HAAP could not only achieve a 98.5% removal efficiency of kaolin suspensions, but could also overcome the obstacles induced by high-concentration suspensions (4500 NTU), high pHs, and low fields. The results showed that the magnetic flocculation of kaolin with Fe3O4@HAAP was a rapid process with a 91.96% removal efficiency at 0.25 h. In an interaction energy analysis, both the UDLVO and UEDLVO showed electrostatic repulsion between the kaolin particles in the condition of a flocculation distance of <30 nm, and this changed to electrostatic attraction when the separation distance was >30 nm. As Fe3O4@ HAAP was employed, kaolin particles could cross the energy barrier more easily; thus, the fine flocs and particles were destabilized and aggregated further. Rapid magnetic separation was realized under the action of an external magnetic field. Full article
Show Figures

Graphical abstract

18 pages, 5660 KiB  
Article
Application of Bimetallic Hydroxide/Graphene Composites in Wastewater Treatment
by Dan Chen, Jiao Wang, Nana Li, Xiaoqin Luo, Hua Yu, Haichang Fu, Zhangxin Chen, Binbin Yu, Yanxian Jin and Dmitry S. Kopchuk
Molecules 2024, 29(13), 3157; https://doi.org/10.3390/molecules29133157 - 2 Jul 2024
Viewed by 1036
Abstract
The increasing discharge of antibiotic wastewater leads to increasing water pollution. Most of these antibiotic wastewaters are persistent, strongly carcinogenic, easy to bioaccumulate, and have other similar characteristics, seriously jeopardizing human health and the ecological environment. As a commonly used wastewater treatment technology, [...] Read more.
The increasing discharge of antibiotic wastewater leads to increasing water pollution. Most of these antibiotic wastewaters are persistent, strongly carcinogenic, easy to bioaccumulate, and have other similar characteristics, seriously jeopardizing human health and the ecological environment. As a commonly used wastewater treatment technology, non-homogeneous electro-Fenton technology avoids the hazards of H2O2 storage and transportation as well as the loss of desorption and reabsorption. It also facilitates electron transfer on the electrodes and the reduction of Fe3+ on the catalysts, thereby reducing sludge production. However, the low selectivity and poor activity of electro-synthesized H2O2, along with the low concentration of its products, combined with the insufficient activity of electrically activated H2O2, results in a low ∙OH yield. To address the above problems, composites of layered bimetallic hydroxides and carbon materials were designed and prepared in this paper to enhance the performance of electro-synthesized H2O2 and non-homogeneous electro-Fenton by changing the composite mode of the materials. Three composites, NiFe layered double hydroxides (LDHs)/reduced graphene oxide (rGO), NiMn LDHs/rGO, and NiMnFe LDHs/rGO, were constructed by the electrostatic self-assembly of exfoliated LDHs with few-layer graphene. The LDHs/rGO was loaded on carbon mats to construct the electro-Fenton cathode materials, and the non-homogeneous electro-Fenton oxidative degradation of organic pollutants was realized by the in situ electrocatalytic reduction of O2 to ∙OH. Meanwhile, the effects of solution pH, applied voltage, and initial concentration on the performance of non-homogeneous electro-Fenton were investigated with ceftazidime as the target pollutant, which proved that the cathode materials have an excellent electro-Fenton degradation effect. Full article
Show Figures

Figure 1

21 pages, 7019 KiB  
Article
Adsorption Potential, Speciation Transformation, and Risk Assessment of Hg-, Cd-, and Pb-Contaminated Soils Using Biochar in Combination with Potassium Dihydrogen Phosphate
by Dun Wu, Jianwei Lu, Kun Huang, Longjin Jiang, Xia Gao, Shuqin Li, Hai Liu and Boren Wu
Molecules 2024, 29(10), 2202; https://doi.org/10.3390/molecules29102202 - 8 May 2024
Viewed by 1132
Abstract
The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including [...] Read more.
The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including mercury (Hg2+), cadmium (Cd2+), and lead (Pb2+). The adsorption kinetics of metal ions in aqueous solutions with different concentrations was tested, and the fitting effects of the two models were compared. The findings demonstrate that the joint application of biochar and KH2PO4 could markedly enhance the immobilization efficacy of Pb2+, whereas the utilization of KH2PO4 on its own exhibited a more pronounced immobilization impact on Cd2+. Furthermore, the present study underscores the shortcomings of various remediation techniques that must be taken into account when addressing heavy metal-contaminated soils. It also emphasizes the value of comprehensive remediation techniques that integrate multiple remediation agents. This study offers a novel approach and methodology for addressing the intricate and evolving challenges posed by heavy metal contamination in soil. Its practical value and potential for application are significant. Full article
Show Figures

Figure 1

15 pages, 2285 KiB  
Article
Valorization of Spent Vetiver Roots for Biochar Generation
by Sameer Neve, Dibyendu Sarkar, Manas Warke, Teresa Bandosz and Rupali Datta
Molecules 2024, 29(1), 63; https://doi.org/10.3390/molecules29010063 - 21 Dec 2023
Cited by 1 | Viewed by 1569
Abstract
Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using [...] Read more.
Vetiver root is widely used to produce essential oils in the aromatherapy industry. After the extraction of oil, the roots are disposed of as waste. The central objective of this research was to explore the conversion of this waste into a resource using a circular economy framework. To generate biochar, vetiver roots were pyrolyzed at different temperatures (300, 500, and 700 °C) and residence times (30, 60, and 120 min). Analysis showed the root biochar generated at 500 °C and held for 60 min had the highest surface area of 308.15 m2/g and a yield of 53.76%, in addition to other favorable characteristics. Comparatively, the surface area and the yield of shoot biochar were significantly lower compared to those of the roots. Repurposing the spent root biomass for environmental and agronomic benefits, our circular economy concept prevents the plant tissue from entering landfills or the waste stream. Full article
Show Figures

Figure 1

Back to TopTop