molecules-logo

Journal Browser

Journal Browser

Synthesis, Functionalization, and Sensing Applications of Diverse Dimensional Graphene Materials

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Applied Chemistry".

Deadline for manuscript submissions: closed (31 August 2023) | Viewed by 26140

Special Issue Editors

School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Interests: chemo-/bio-sensors; electrochemistry; electrochemiluminescence; bioanalysis; food analysis; environmental monitoring; noble metal nanomaterials; porous materials; carbon nanomaterials
Special Issues, Collections and Topics in MDPI journals
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
Interests: porous materials; electrochemical/electrochemiluminescence sensors; anti-fouling determination; POCT; mass transport in nanochannels
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Graphene-based materials, such as zero-dimensional graphene quantum dots, one-dimensional graphene nanoribbons, two-dimensional graphene nanosheets, and three-dimensional graphene frameworks, have attracted great attention due to their high surface area, tunable structure, electrical conductivity, and excellent physical and chemical stability. These characteristics are ideal for sensing applications, such as electrochemical sensors, fluorescent sensors, colorimetric sensors, and others. Functionalization of graphene-based materials could further improve the performance, making them more compatible with sensing applications.

This Special Issue is to report recent developments and advances of the synthesis, functionalization, and sensing applications of diverse dimensional graphene materials. We welcome the submission of original research, review, mini review, and perspective articles on themes.

Dr. Jiyang Liu
Dr. Fei Yan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diverse dimensional graphene materials
  • synthesis
  • functionalization
  • sensors
  • bioanalysis
  • environmental monitoring
  • food safety

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 3941 KiB  
Article
N-Doped Graphene Quantum Dots Confined within Silica Nanochannels for Enhanced Electrochemical Detection of Doxorubicin
by Chaoyan Zhang, Xiaoyu Zhou, Fei Yan and Jing Lin
Molecules 2023, 28(18), 6443; https://doi.org/10.3390/molecules28186443 - 5 Sep 2023
Cited by 30 | Viewed by 1501
Abstract
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability [...] Read more.
Herein, we describe a fast and highly sensitive electrochemical sensor for doxorubicin (DOX) detection based on the indium tin oxide (ITO) modified with a binary material consisting of vertically-ordered mesoporous silica films (VMSFs) and N-doped graphene quantum dots (NGQDs). VMSFs, with high permeability and efficient molecular transport capacity, is attached to the ITO electrode via a rapid and controllable electrochemical method, which can serve as a solid template for the confinement of numerous NGQDs through facile electrophoresis. By virtue of the excellent charge transfer capacity, π-π and electrostatic preconcentration effects of NGQDs, as well as the electrostatic enrichment ability of VMSF, the presented NGQDs@VMSF/ITO shows amplified electrochemical signal towards DOX with a positive charge, resulting in good analytical performance in terms of a wide linear range (5 nM~0.1 μM and 0.1~1 μM), high sensitivity (30.4 μA μM−1), and a low limit of detection (0.5 nM). Moreover, due to the molecular sieving property of VMSF, the developed NGQDs@VMSF/ITO sensor has good selectivity and works well in human serum and urine samples, with recoveries of 97.0~109%, thus providing a simple and reliable method for the direct electrochemical analysis of DOX without complex sample pretreatment procedures. Full article
Show Figures

Graphical abstract

15 pages, 5366 KiB  
Article
Facile Synthesis of Iron and Nitrogen Co-Doped Carbon Dot Nanozyme as Highly Efficient Peroxidase Mimics for Visualized Detection of Metabolites
by Shuai Xu, Shiyue Zhang, Yutong Li and Jiyang Liu
Molecules 2023, 28(16), 6064; https://doi.org/10.3390/molecules28166064 - 15 Aug 2023
Cited by 19 | Viewed by 1976
Abstract
Visual detection based on nanozymes has great potential for the rapid detection of metabolites in clinical analysis or home-based health management. In this work, iron and nitrogen co-doped carbon dots (Fe,N-CDs) were conveniently synthesized as a nanozyme for the visual detection of glucose [...] Read more.
Visual detection based on nanozymes has great potential for the rapid detection of metabolites in clinical analysis or home-based health management. In this work, iron and nitrogen co-doped carbon dots (Fe,N-CDs) were conveniently synthesized as a nanozyme for the visual detection of glucose (Glu) or cholesterol (Chol). Using inexpensive and readily available precursors, Fe,N-CDs with peroxidase-like activity were conveniently prepared through a simple hydrothermal method. Co-doping of Fe and N atoms enhanced the catalytic activity of the nanozyme. The nanozyme had a low Michaelis constant (Km) of 0.23 mM when hydrogen peroxide (H2O2) was used as the substrate. Free radical trapping experiments revealed that the reactive oxygen species (ROS) generated in the nanozyme-catalyzed process were superoxide anion radicals (•O2−), which can oxidize colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to generate blue oxidation product (ox-TMB) with characteristics absorbance at 652 nm. Based on this mechanism, a colorimetric sensor was constructed to detect H2O2 ranging from 0.1 μM to 200 μM with a detection limit (DL) of 75 nM. In the presence of glucose oxidase (Gox) or Chol oxidase (Chox), Glu or Chol was oxidized, respectively, and generated H2O2. Based on this, indirect detection of Glu and Chol was realized with linear detection ranges of 5–160 μM and 2–200 μM and DLs of 2.8 μM and 0.8 μM, respectively. A paper-based visual detection platform was fabricated using Fe,N-CDs as nanozyme ink to prepare testing paper by inkjet printing. Using a smartphone to record the RGB values of the testing paper after the reaction, visual detection of Glu and Chol can be achieved with linear detection ranges of 5–160 μM (DL of 3.3 μM) and 2–200 μM (DL of 1.0 μM), respectively. Full article
Show Figures

Figure 1

16 pages, 7212 KiB  
Article
Magnetic Nanozyme Based on Loading Nitrogen-Doped Carbon Dots on Mesoporous Fe3O4 Nanoparticles for the Colorimetric Detection of Glucose
by Yunxi Huang, Zhanling Ding, Yutong Li, Fengna Xi and Junjie Liu
Molecules 2023, 28(12), 4573; https://doi.org/10.3390/molecules28124573 - 6 Jun 2023
Cited by 17 | Viewed by 2535
Abstract
The simple and accurate monitoring of blood glucose level is of great significance for the prevention and control of diabetes. In this work, a magnetic nanozyme was fabricated based on loading nitrogen-doped carbon dots (N-CDs) on mesoporous Fe3O4 nanoparticles for [...] Read more.
The simple and accurate monitoring of blood glucose level is of great significance for the prevention and control of diabetes. In this work, a magnetic nanozyme was fabricated based on loading nitrogen-doped carbon dots (N-CDs) on mesoporous Fe3O4 nanoparticles for the colorimetric detection of glucose in human serum. Mesoporous Fe3O4 nanoparticles were easily synthesized using a solvothermal method, and N-CDs were then prepared in situ and loaded on the Fe3O4 nanoparticles, leading to a magnetic N-CDs/Fe3O4 nanocomposite. The N-CDs/Fe3O4 nanocomposite exhibited good peroxidase-like activity and could catalyze the oxidation of the colorless enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) to blue TMB oxide (ox-TMB) in the presence of hydrogen peroxide (H2O2). When the N-CDs/Fe3O4 nanozyme was combined with glucose oxidase (Gox), Gox catalyzed the oxidization of glucose, producing H2O2 and leading to the oxidation of TMB under the catalysis of the N-CDs/Fe3O4 nanozyme. Based on this mechanism, a colorimetric sensor was constructed for the sensitive detection of glucose. The linear range for glucose detection was from 1 to 180 μM, and the limit of detection (LOD) was 0.56 μM. The recovered nanozyme through magnetic separation showed good reusability. The visual detection of glucose was also realized by preparing an integrated agarose hydrogel containing the N-CDs/Fe3O4 nanozyme, glucose oxidase, and TMB. The colorimetric detection platform has an enormous potential for the convenient detection of metabolites. Full article
Show Figures

Figure 1

11 pages, 4307 KiB  
Article
Anti-Biofouling Electrochemical Sensor Based on the Binary Nanocomposite of Silica Nanochannel Array and Graphene for Doxorubicin Detection in Human Serum and Urine Samples
by Ning Lv, Xun Qiu, Qianqian Han, Fengna Xi, Yina Wang and Jun Chen
Molecules 2022, 27(24), 8640; https://doi.org/10.3390/molecules27248640 - 7 Dec 2022
Cited by 24 | Viewed by 1959
Abstract
A disposable and portable electrochemical sensor was fabricated by integrating vertically-ordered silica mesoporous films (VMSF) and electrochemically reduced graphene (ErGO) on a screen-printed carbon electrode (SPCE). Such VMSF/ErGO/SPCEs could be prepared by a simple and controllable electrochemical method. Stable growth of VMSF on [...] Read more.
A disposable and portable electrochemical sensor was fabricated by integrating vertically-ordered silica mesoporous films (VMSF) and electrochemically reduced graphene (ErGO) on a screen-printed carbon electrode (SPCE). Such VMSF/ErGO/SPCEs could be prepared by a simple and controllable electrochemical method. Stable growth of VMSF on SPCE could be accomplished by the introduction of an adhesive ErGO nanolayer owing to its oxygen-containing groups and two-dimensional (2D) planar structure. An outer VMSF layer acting as a protective coating is able to prevent the leakage of the inner ErGO layer from the SPCE surface. Thanks to the electrostatic permselectivity and anti-fouling capacity of VMSF and to the good electroactive activity of ErGO, binary nanocomposites of VMSF and ErGO endow the SPCE with excellent analytical performance, which could be used to quantitatively detect doxorubicin (DOX) in biological samples (human serum and urine) with high sensitivity, good long-term stability, and low sample amounts. Full article
Show Figures

Figure 1

13 pages, 6042 KiB  
Article
A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide
by Kaixin Chen, Haoling Chen, Songxian Liang, Jindan Wu, Ping Zhou and Nan Li
Molecules 2022, 27(22), 7918; https://doi.org/10.3390/molecules27227918 - 16 Nov 2022
Cited by 6 | Viewed by 2338
Abstract
The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2 [...] Read more.
The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10−10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples. Full article
Show Figures

Figure 1

17 pages, 5330 KiB  
Article
Fabrication of a Ratiometric Fluorescence Sensor Based on Carbon Dots as Both Luminophores and Nanozymes for the Sensitive Detection of Hydrogen Peroxide
by Yutong Li, Xinhui Gu, Jiayin Zhao and Fengna Xi
Molecules 2022, 27(21), 7379; https://doi.org/10.3390/molecules27217379 - 30 Oct 2022
Cited by 16 | Viewed by 2433
Abstract
The construction of novel fluorescent nanozymes is highly desirable for providing new strategies for nanozyme-based sensing systems. Herein, a novel ratiometric fluorescence sensing platform was constructed based on carbon dots (CDs) as both luminophores and nanozymes, which could realize the sensitive detection of [...] Read more.
The construction of novel fluorescent nanozymes is highly desirable for providing new strategies for nanozyme-based sensing systems. Herein, a novel ratiometric fluorescence sensing platform was constructed based on carbon dots (CDs) as both luminophores and nanozymes, which could realize the sensitive detection of hydrogen peroxide (H2O2). CDs with peroxidase-mimicking activity were prepared with a one-step hydrothermal method using L-histidine as an inexpensive precursor. CDs had bright blue fluorescence. Due to the pseudo-peroxidase activity, CDs catalyzed the oxidation of o-phenylenediamine (OPD) with H2O2 to generate 2,3-diaminophenolazine (DAP). The fluorescence resonance energy transfer (FRET) between CDs and DAP resulted in a decrease in the fluorescence of CDs and an increase in the fluorescence of DAP, leading to a ratiometric fluorescence system. The free radical trapping experiment was used to investigate the reactive oxygen radicals (ROS) in the catalytic process of CD nanozymes. The enzymatic parameters of CD nanozymes, including the Michaelis constant (Km) and the maximum initial reaction velocities (Vmax), were investigated. A good affinity for both OPD and H2O2 substrates was proven. Based on the FRET between CDs and OPD, a ratiometric fluorescence analysis of H2O2 was achieved and results ranged from 1 to 20 μM and 20 to 200 μM with a low limit of detection (LOD, 0.42 μM). The detection of H2O2 in milk was also achieved. Full article
Show Figures

Figure 1

13 pages, 3009 KiB  
Article
Nanozyme Based on Dispersion of Hemin by Graphene Quantum Dots for Colorimetric Detection of Glutathione
by Zhaoshen Li, Xiaochun Deng, Xiaoping Hong and Shengfa Zhao
Molecules 2022, 27(20), 6779; https://doi.org/10.3390/molecules27206779 - 11 Oct 2022
Cited by 9 | Viewed by 2285
Abstract
Compared with natural enzymes, nanozymes have the advantages of good catalytic performance, high stability, low cost, and can be used under extreme conditions. Preparation of highly active nanozymes through simple methods and their application in bioanalysis is highly desirable. In this work, a [...] Read more.
Compared with natural enzymes, nanozymes have the advantages of good catalytic performance, high stability, low cost, and can be used under extreme conditions. Preparation of highly active nanozymes through simple methods and their application in bioanalysis is highly desirable. In this work, a nanozyme based on dispersion of hemin by graphene quantum dot (GQD) is demonstrated, which enables colorimetric detection of glutathione (GSH). GQD was prepared by a one-step hydrothermal synthesis method. Hemin, the catalytic center of heme protein but with low solubility and easy aggregation that limits its catalytic activity, can be dispersed with GQD by simple sonication. The as-prepared Hemin/GQD nanocomplex had excellent peroxidase-like activity and can be applied as a nanozyme. In comparison with natural horseradish peroxidase (HRP), Hemin/GQD nanozyme exhibited a clearly reduced Michaelis–Menten constant (Km) when tetramethylbenzidine (TMB) was used as the substrate. With H2O2 being the substrate, Hemin/GQD nanozyme exhibited a higher maximum reaction rate (Vmax) than HRP. The mechanisms underlying the nanozyme activity were investigated through a free radical trapping experiment. A colorimetric platform capable of sensitive detection of GSH was developed as the proof-of-concept demonstration. The linear detection range was from 1 μM to 50 μM with a low limit of detection of 200 nM (S/N = 3). Determination of GSH in serum samples was also achieved. Full article
Show Figures

Figure 1

13 pages, 5151 KiB  
Article
Probe-Integrated Label-Free Electrochemical Immunosensor Based on Binary Nanocarbon Composites for Detection of CA19-9
by Zhengzheng Yan, Jun Xing, Ruochong He, Qinping Guo and Ji Li
Molecules 2022, 27(20), 6778; https://doi.org/10.3390/molecules27206778 - 11 Oct 2022
Cited by 3 | Viewed by 1886
Abstract
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen [...] Read more.
Convenient and sensitive detection of tumor biomarkers is crucial for the early diagnosis and treatment of cancer. Herein, we present a probe-integrated and label-free electrochemical immunosensor based on binary nanocarbon composites and surface-immobilized methylene blue (MB) redox probes for detection of carbohydrate antigen 199 (CA19-9), which is closely associated with gastric malignancies. Nanocarbon composites consisting of electrochemically reduced graphene oxides and carbon nanotubes (ErGO-CNT) are electrodeposited onto an indium tin oxide (ITO) electrode surface to form a 3D nanocomposite film, which could provide high surface area to immobilize abundant MB probes, facilitate the electron transfer of MB, and therefore, improve sensitivity. Polydopamine (PDA) served as a bifunctional linker is able to immobilize anti-CA19-9 antibodies and stabilize the inner probe, conferring the sensing interface with specific recognition capacity. Electrochemical detection of CA19-9 is achieved based on the decrease of the redox signal of MB after specific binding of CA19-9 with a wide linear range of 0.1 mU/mL to 100 U/mL and a limit of detection (LOD) of 0.54 nU/mL (S/N = 3). The constructed electrochemical immunosensor has good selectivity, repeatability, reproducibility, and stability. Furthermore, determination of CA19-9 in human serum samples is also realized. Full article
Show Figures

Figure 1

12 pages, 3185 KiB  
Article
Disposable Amperometric Label-Free Immunosensor on Chitosan–Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen
by Liang Yan, Chaoyan Zhang and Fengna Xi
Molecules 2022, 27(18), 5895; https://doi.org/10.3390/molecules27185895 - 11 Sep 2022
Cited by 28 | Viewed by 2426
Abstract
A facile and highly sensitive determination of prostate-specific antigen (PSA) is of great significance for the early diagnosis, monitoring and prognosis of prostate cancer. In this work, a disposable and label-free electrochemical immunosensing platform was demonstrated based on chitosan–graphene-modified indium tin oxide (ITO) [...] Read more.
A facile and highly sensitive determination of prostate-specific antigen (PSA) is of great significance for the early diagnosis, monitoring and prognosis of prostate cancer. In this work, a disposable and label-free electrochemical immunosensing platform was demonstrated based on chitosan–graphene-modified indium tin oxide (ITO) electrode, which enables sensitive amperometric determination of PSA. Chitosan (CS) modified reduced graphene oxide (rGO) nanocomposite (CS–rGO) was easily synthesized by the chemical reduction of graphene oxide (GO) using CS as a dispersant and biofunctionalizing agent. When CS–rGO was modified on the patterned ITO, CS offered high biocompatibility and reactive groups for the immobilization of recognition antibodies and rGO acted as a transduction element and enhancer to improve the electronic conductivity and stability of the CS–rGO composite film. The affinity-based biosensing interface was constructed by covalent immobilization of a specific polyclonal anti-PSA antibody (Ab) on the amino-enriched electrode surface via a facile glutaraldehyde (GA) cross-linking method, which was followed by the use of bovine serum albumin to block the non-specific sites. The immunosensor allowed the detection of PSA in a wide range from 1 to 5 ng mL−1 with a low limit of detection of 0.8 pg mL−1. This sensor also exhibited high selectivity, reproducibility, and good storage stability. The application of the prepared immunosensor was successfully validated by measuring PSA in spiked human serum samples. Full article
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 6747 KiB  
Review
Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis
by Li Fu, Yuhong Zheng, Xingxing Li, Xiaozhu Liu, Cheng-Te Lin and Hassan Karimi-Maleh
Molecules 2023, 28(18), 6719; https://doi.org/10.3390/molecules28186719 - 20 Sep 2023
Cited by 19 | Viewed by 3426
Abstract
Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene [...] Read more.
Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care. Full article
Show Figures

Figure 1

28 pages, 4772 KiB  
Review
Functionalization of Graphene Derivatives with Conducting Polymers and Their Applications in Uric Acid Detection
by Mirela Văduva, Mihaela Baibarac and Oana Cramariuc
Molecules 2023, 28(1), 135; https://doi.org/10.3390/molecules28010135 - 24 Dec 2022
Cited by 8 | Viewed by 2650
Abstract
In this article, we review recent progress concerning the development of sensorial platforms based on graphene derivatives and conducting polymers (CPs), alternatively deposited or co-deposited on the working electrode (usually a glassy carbon electrode; GCE) using a simple potentiostatic method (often cyclic voltammetry; [...] Read more.
In this article, we review recent progress concerning the development of sensorial platforms based on graphene derivatives and conducting polymers (CPs), alternatively deposited or co-deposited on the working electrode (usually a glassy carbon electrode; GCE) using a simple potentiostatic method (often cyclic voltammetry; CV), possibly followed by the deposition of metallic nanoparticles (NPs) on the electrode surface (ES). These materials have been successfully used to detect an extended range of biomolecules of clinical interest, such as uric acid (UA), dopamine (DA), ascorbic acid (AA), adenine, guanine, and others. The most common method is electrochemical synthesis. In the composites, which are often combined with metallic NPs, the interaction between the graphene derivatives—including graphene oxide (GO), reduced graphene oxide (RGO), or graphene quantum dots (GQDs)—and the CPs is usually governed by non-covalent functionalization through π–π interactions, hydrogen bonds, and van der Waals (VW) forces. The functionalization of GO, RGO, or GQDs with CPs has been shown to speed up electron transfer during the oxidation process, thus improving the electrochemical response of the resulting sensor. The oxidation mechanism behind the electrochemical response of the sensor seems to involve a partial charge transfer (CT) from the analytes to graphene derivatives, due to the overlapping of π orbitals. Full article
Show Figures

Figure 1

Back to TopTop