molecules-logo

Journal Browser

Journal Browser

Targeting Oncogenic Transcription Factors by Compounds Derived from Mother Nature

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (15 October 2018) | Viewed by 27129

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue aims to highlight the pivotal contribution of deregulated oncogenic transcription factors in cancer initiation, promotion and progression, and the role of compounds derived from natural sources in targeting the aberrant activation of these transcription factors in diverse tumor models.

Dr. Gautam Sethi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer
  • transcription factors
  • natural compounds
  • apoptosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

11 pages, 1785 KiB  
Article
Bergamottin Suppresses Metastasis of Lung Cancer Cells through Abrogation of Diverse Oncogenic Signaling Cascades and Epithelial-to-Mesenchymal Transition
by Jeong-Hyeon Ko, Dongwoo Nam, Jae-Young Um, Sang Hoon Jung, Gautam Sethi and Kwang Seok Ahn
Molecules 2018, 23(7), 1601; https://doi.org/10.3390/molecules23071601 - 2 Jul 2018
Cited by 72 | Viewed by 4075
Abstract
Bergamottin (BGM) is a naturally occurring furanocoumarin and is known to inhibit the growth of tumor cells. However, there is no available evidence that BGM has an inhibitory effect on cancer metastasis, specifically on the epithelial-to-mesenchymal transition (EMT) process in the malignant cells. [...] Read more.
Bergamottin (BGM) is a naturally occurring furanocoumarin and is known to inhibit the growth of tumor cells. However, there is no available evidence that BGM has an inhibitory effect on cancer metastasis, specifically on the epithelial-to-mesenchymal transition (EMT) process in the malignant cells. Here we aimed to evaluate the antimetastatic potential of BGM in human lung adenocarcinoma cells. Our results demonstrate that BGM can block EMT, and observed inhibition was accompanied by downregulation of fibronectin, vimentin, N-cadherin, twist and snail expression, and upregulation of occludin and E-cadherin. Interestingly, transforming growth factor-β (TGF-β)-induced upregulation of fibronectin, vimentin, N-cadherin, twist and snail, and downregulation of occludin and E-cadherin, were abrogated by BGM treatment. Moreover, the treatment of BGM repressed TGF-β-induced cell invasive potential. BGM treatment also inhibited multiple oncogenic cascades such as PI3K/Akt/mTOR. Overall, the results demonstrate the potential antimetastatic activity of BGM against lung cancer cells. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

21 pages, 5949 KiB  
Review
Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers
by Prabhakaran Soundararajan and Jung Sun Kim
Molecules 2018, 23(11), 2983; https://doi.org/10.3390/molecules23112983 - 15 Nov 2018
Cited by 190 | Viewed by 17448
Abstract
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs [...] Read more.
Glucosinolates (GSL) are naturally occurring β-d-thioglucosides found across the cruciferous vegetables. Core structure formation and side-chain modifications lead to the synthesis of more than 200 types of GSLs in Brassicaceae. Isothiocyanates (ITCs) are chemoprotectives produced as the hydrolyzed product of GSLs by enzyme myrosinase. Benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC) and sulforaphane ([1-isothioyanato-4-(methyl-sulfinyl) butane], SFN) are potential ITCs with efficient therapeutic properties. Beneficial role of BITC, PEITC and SFN was widely studied against various cancers such as breast, brain, blood, bone, colon, gastric, liver, lung, oral, pancreatic, prostate and so forth. Nuclear factor-erythroid 2-related factor-2 (Nrf2) is a key transcription factor limits the tumor progression. Induction of ARE (antioxidant responsive element) and ROS (reactive oxygen species) mediated pathway by Nrf2 controls the activity of nuclear factor-kappaB (NF-κB). NF-κB has a double edged role in the immune system. NF-κB induced during inflammatory is essential for an acute immune process. Meanwhile, hyper activation of NF-κB transcription factors was witnessed in the tumor cells. Antagonistic activity of BITC, PEITC and SFN against cancer was related with the direct/indirect interaction with Nrf2 and NF-κB protein. All three ITCs able to disrupts Nrf2-Keap1 complex and translocate Nrf2 into the nucleus. BITC have the affinity to inhibit the NF-κB than SFN due to the presence of additional benzyl structure. This review will give the overview on chemo preventive of ITCs against several types of cancer cell lines. We have also discussed the molecular interaction(s) of the antagonistic effect of BITC, PEITC and SFN with Nrf2 and NF-κB to prevent cancer. Full article
Show Figures

Figure 1

13 pages, 894 KiB  
Review
Molecular Targets Modulated by Fangchinoline in Tumor Cells and Preclinical Models
by Myriam Mérarchi, Gautam Sethi, Lu Fan, Srishti Mishra, Frank Arfuso and Kwang Seok Ahn
Molecules 2018, 23(10), 2538; https://doi.org/10.3390/molecules23102538 - 5 Oct 2018
Cited by 37 | Viewed by 4976
Abstract
Despite tremendous progress made during the last few decades in the treatment options for cancer, compounds isolated from Mother Nature remain the mainstay for therapy of various malignancies. Fangchinoline, initially isolated from the dried root of Stephaniae tetrandrine, has been found to [...] Read more.
Despite tremendous progress made during the last few decades in the treatment options for cancer, compounds isolated from Mother Nature remain the mainstay for therapy of various malignancies. Fangchinoline, initially isolated from the dried root of Stephaniae tetrandrine, has been found to exhibit diverse pharmacological effects including significant anticancer activities both in tumor cell lines and selected preclinical models. This alkaloid appears to act by modulating the activation of various important oncogenic molecules involved in tumorigenesis leading to a significant decrease in aberrant proliferation, survival and metastasis of tumor cells. This mini-review briefly describes the potential effects of fangchinoline on important hallmarks of cancer and highlights the molecular targets modulated by this alkaloid in various tumor cell lines and preclinical models. Full article
Show Figures

Figure 1

Back to TopTop