Interaction of Oxygen and Other Gases with Haem Containing Proteins

A special issue of Oxygen (ISSN 2673-9801).

Deadline for manuscript submissions: closed (31 August 2024) | Viewed by 4341

Special Issue Editor


E-Mail Website
Guest Editor
School of Applied Sciences, University of the West of England, Bristol, UK
Interests: redox signaling; reactive oxygen species; hydrogen sulfide; hydrogen gas; nitric oxide
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The interaction of molecular oxygen (O2) and haem-containing proteins has been known of for a long time. Oxygen is transiently bound by both haemoglobin and myoglobin in animals, as well as by globins, found in plants. Oxygen also binds to proteins with haem prosthetic groups which function as terminal electron acceptors, such as in the enzyme NADPH oxidase, which is instrumental in the generation of reactive oxygen species in animals and plants. Other gases, besides oxygen, interact with haem-containing proteins too. Carbon dioxide and carbon monoxide are two good examples, but several other gases are also known to cause similar effects. Inert gases, such as xenon (Xe), can bind to hydrophobic cavities and alter protein function, with the globin proteins being a good model system for the study of such effects. Nitric oxide (NO) is known to affect haem proteins, such as haemoglobin and guanylyl cyclase. More recently, molecular hydrogen (H2) has been found to cause significant biological effects, partly mediated by the removal of hydroxyl radicals. One mechanism suggested is the interaction of H2 with protein haem groups. Therefore, along with oxygen, several gases which are likely to be present in cells at the same time are able to interact with a range of proteins which contain haem, and their interplay and how they affect cellular function will no doubt be an area of interest in the foreseeable future.

Prof. Dr. John T. Hancock
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Oxygen is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oxygen oxygen transport and movement
  • oxygen binding
  • gasotransmitters haem (Heme)
  • prosthetic groups
  • guanylyl cyclase (Guanylate cyclase)
  • NADPH oxidase
  • carbon monoxide
  • carbon dioxide
  • electron transfer
  • nitric oxide
  • nitric oxide synthase
  • xenon
  • argon
  • krypton
  • hydrogen
  • hydrogen sulfide
  • hydrophobic cavities and pockets
  • protein structure alterations

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

13 pages, 4291 KiB  
Article
Diffusion and Spectroscopy of H2 in Myoglobin
by Jiri Käser, Kai Töpfer and Markus Meuwly
Oxygen 2024, 4(4), 389-401; https://doi.org/10.3390/oxygen4040024 - 31 Oct 2024
Viewed by 370
Abstract
The diffusional dynamics and vibrational spectroscopy of molecular hydrogen (H2) in myoglobin (Mb) is characterized. Hydrogen has been implicated in a number of physiologically relevant processes, including cellular aging or inflammation. Here, the internal diffusion through the protein matrix was characterized, [...] Read more.
The diffusional dynamics and vibrational spectroscopy of molecular hydrogen (H2) in myoglobin (Mb) is characterized. Hydrogen has been implicated in a number of physiologically relevant processes, including cellular aging or inflammation. Here, the internal diffusion through the protein matrix was characterized, and the vibrational spectroscopy was investigated using conventional empirical energy functions and improved models able to describe higher-order electrostatic moments of the ligand. Depending on the energy function used, H2 can occupy the same internal defects as already found for Xe or CO (Xe1 to Xe4 and B-state). Furthermore, four additional sites were found, some of which had been discovered in earlier simulation studies. Simulations using a model based on a Morse oscillator and distributed charges to correctly describe the molecular quadrupole moment of H2 indicate that the vibrational spectroscopy of the ligand depends on the docking site it occupies. This is consistent with the findings for CO in Mb from experiments and simulations. For H2, the maxima of the absorption spectra cover ∼20 cm−1 which are indicative of a pronounced Stark effect of the surrounding protein matrix on the vibrational spectroscopy of the ligand. Electronic structure calculations show that H2 forms a stable complex with the heme iron (stabilized by ∼−12 kcal/mol), but splitting of H2 is unlikely due to a high activation energy (∼50 kcal/mol). Full article
(This article belongs to the Special Issue Interaction of Oxygen and Other Gases with Haem Containing Proteins)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

11 pages, 261 KiB  
Review
Noble Gases in Medicine: Current Status and Future Prospects
by David A. Winkler
Oxygen 2024, 4(4), 421-431; https://doi.org/10.3390/oxygen4040026 - 16 Nov 2024
Viewed by 367
Abstract
Noble gases are a valuable but overlooked source of effective and safe therapeutics. Being monoatomic and chemically inert, they nonetheless have a surprisingly wide range of biochemical and medically valuable properties. This mini review briefly summarizes these properties for the most widely used [...] Read more.
Noble gases are a valuable but overlooked source of effective and safe therapeutics. Being monoatomic and chemically inert, they nonetheless have a surprisingly wide range of biochemical and medically valuable properties. This mini review briefly summarizes these properties for the most widely used noble gases and focuses and research gaps and missed opportunities for wider use of these intriguing ‘atomic’ drugs. The main research gaps and opportunities lie firstly in the application of advanced computational modelling methods for noble gases and recent developments in accurate predictions of protein structures from sequence (AlphaFold), and secondly in the use of very efficient and selective drug delivery technologies to improve the solubility, efficacy, and delivery of noble gases to key targets, especially for the lighter, poorly soluble gases. Full article
(This article belongs to the Special Issue Interaction of Oxygen and Other Gases with Haem Containing Proteins)

Other

Jump to: Research, Review

16 pages, 1549 KiB  
Perspective
An Interplay of Gases: Oxygen and Hydrogen in Biological Systems
by Grace Russell, Jennifer May and John T. Hancock
Oxygen 2024, 4(1), 37-52; https://doi.org/10.3390/oxygen4010003 - 9 Feb 2024
Cited by 2 | Viewed by 3095
Abstract
Produced by photosynthesis, oxygen (O2) is a fundamentally important gas in biological systems, playing roles as a terminal electron receptor in respiration and in host defence through the creation of reactive oxygen species (ROS). Hydrogen (H2) plays a role [...] Read more.
Produced by photosynthesis, oxygen (O2) is a fundamentally important gas in biological systems, playing roles as a terminal electron receptor in respiration and in host defence through the creation of reactive oxygen species (ROS). Hydrogen (H2) plays a role in metabolism for some organisms, such as at thermal vents and in the gut environment, but has a role in controlling growth and development, and in disease states, both in plants and animals. It has been suggested as a medical therapy and for enhancing agriculture. However, the exact mode of action of H2 in biological systems is not fully established. Furthermore, there is an interrelationship between O2 and H2 in organisms. These gases may influence each other’s presence in solution, and may both interact with the same cellular components, such as haem prosthetic groups. It has also been suggested that H2 may affect the structures of some proteins, such as globins, with possible effects on O2 movement in organisms. Lastly, therapies may be based on supplying O2 and H2 together, such as with oxyhydrogen. Therefore, the relationship regarding how biological systems perceive and respond to both O2 and H2, and the interrelationship seen are worth considering, and will be discussed here. Full article
(This article belongs to the Special Issue Interaction of Oxygen and Other Gases with Haem Containing Proteins)
Show Figures

Figure 1

Back to TopTop