Recent Progress in Solid Dispersion Technology, 3rd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Physical Pharmacy and Formulation".

Deadline for manuscript submissions: 10 January 2025 | Viewed by 2579

Special Issue Editor


E-Mail Website
Guest Editor
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Ibaraki, Japan
Interests: solid dispersion; supersaturation; molecular assemblies; poorly soluble drugs; thermal analysis; polymorphism; solubilization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

For over half a century, amorphous solid dispersion (ASD) has been recognized as a powerful formulation technology for improving the oral absorption of poorly soluble drugs. Despite this long history, novel important findings on ASD continue to be reported every year. In contrast to other solubilization technologies using additives, including surfactants, cyclodextrins, and organic solvents, which increase equilibrium solubility, amorphization does not disturb the membrane permeation process. Thus, the probability of success in the improvement of oral absorption is considered generally high for ASD. In 2019, a Special Issue entitled “Recent Progress in Solid Dispersion Technology” was published to cover the cutting-edge research in this field, followed by the 2nd edition in 2021. We have decided to publish the 3rd edition to keep up with the new knowledge and technologies that have since emerged in ASD research.

This Special Issue welcomes any topics regarding recent progress in ASD technology, including, but not limited to the following:

  • Prediction of oral absorption of drugs via ASD;
  • Prediction of long-term storage stability of ASD;
  • Relationship between a compound’s property and its suitability for ASD;
  • How to maintain supersaturated drug concentration after the dissolution of ASD;
  • Relevance of liquid–liquid phase separation to oral absorption;
  • Novel manufacturing technologies involving ASD;
  • Novel functional carriers for ASD;
  • Novel analysis technologies for ASD.

Dr. Kohsaku Kawakami
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • amorphous
  • solid dispersion
  • poorly soluble drug
  • supersaturation
  • liquid–liquid phase separation
  • crystallization
  • stability
  • spray-drying
  • hot-melt extrusion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

17 pages, 6037 KiB  
Article
Co-Amorphous Solid Dispersion System for Improvement in Dissolution Profile of N-(((1r,4r)-4-((6-fluorobenzo[d]oxazol-2-yl)amino)cyclohexyl)methyl)-2-methylpropane-2-sulfonamide as a Neuropeptide Y5 Receptor Antagonist
by Hironori Tanaka and Hiroshi Ueda
Pharmaceutics 2024, 16(10), 1293; https://doi.org/10.3390/pharmaceutics16101293 - 2 Oct 2024
Viewed by 951
Abstract
Background/Objectives: Brick dust molecules exhibit high melting points and ultralow solubility. Overcoming this solubility issue is challenging. Previously, we formulated a co-amorphous system for a neuropeptide Y5 receptor antagonist (NP) as a brick dust drug using sodium taurocholate (ST) to improve its dissolution [...] Read more.
Background/Objectives: Brick dust molecules exhibit high melting points and ultralow solubility. Overcoming this solubility issue is challenging. Previously, we formulated a co-amorphous system for a neuropeptide Y5 receptor antagonist (NP) as a brick dust drug using sodium taurocholate (ST) to improve its dissolution profile. In this study, we have designed a ternary amorphous system involving polymer addition to further improve a co-amorphous system. Methods: The amorphous samples were prepared by the ball milling. The thermal and spectroscopic analyses were performed, and the isothermal crystallization and dissolution profiles were evaluated. Results: The ball milling of NPs, ST, and each of the three types of polymers successfully converted crystalline NPs to amorphous NPs. Thermal analysis confirmed the formation of a single amorphous phase. The infrared spectra revealed a specific interaction between an NP and ST in the co-amorphous system. Moreover, the intermolecular interactions of NP-ST were maintained in the ternary amorphous systems, suggesting the miscible dispersion of the co-amorphous system into the polymer via weak interactions as co-amorphous solid dispersions. The dissolution profile of co-amorphous NP-ST was 4.1- and 6.7-fold higher than that of crystalline NPs in pH 1.2 and 6.8 buffers, respectively. The drug concentration in the ternary amorphous system in pH 1.2 and 6.8 buffers became 1.1–1.2- and 1.4–2.7-fold higher than that seen in the co-amorphous system, respectively. Conclusions: Co-amorphous solid dispersion is a promising method for enhancing the solubility of brick dust molecules. Full article
(This article belongs to the Special Issue Recent Progress in Solid Dispersion Technology, 3rd Edition)
Show Figures

Graphical abstract

Other

Jump to: Research

16 pages, 812 KiB  
Systematic Review
Polymer Matrix and Manufacturing Methods in Solid Dispersion System for Enhancing Andrographolide Solubility and Absorption: A Systematic Review
by Pratchaya Tipduangta, Sunee Chansakaow, Pimpimon Tansakul, Rungarun Meungjai and Piyameth Dilokthornsakul
Pharmaceutics 2024, 16(5), 688; https://doi.org/10.3390/pharmaceutics16050688 - 20 May 2024
Viewed by 1173
Abstract
Background: Andrographolide (ADG) has poor aqueous solubility and low bioavailability. This study systematically reviews the use of solid dispersion (SD) techniques to enhance the solubility and absorption of ADG, with a focus on the methods and polymers utilized. Methodology: We searched electronic databases [...] Read more.
Background: Andrographolide (ADG) has poor aqueous solubility and low bioavailability. This study systematically reviews the use of solid dispersion (SD) techniques to enhance the solubility and absorption of ADG, with a focus on the methods and polymers utilized. Methodology: We searched electronic databases including PubMed, Web of Science, Scopus®, Embase and ScienceDirect Elsevier® up to November 2023 for studies on the solubility or absorption of ADG in SD formulations. Two reviewers independently reviewed the retrieved articles and extracted data using a standardized form and synthesized the data qualitatively. Results: SD significantly improved ADG solubility with up to a 4.7-fold increase and resulted in a decrease in 50% release time (T1/2) to less than 5 min. SD could also improve ADG absorption, as evidenced by higher Cmax and AUC and reduced Tmax. Notably, Soluplus-based SDs showed marked solubility and absorption enhancements. Among the five SD techniques (rotary evaporation, spray drying, hot-melt extrusion, freeze drying and vacuum drying) examined, spray drying emerged as the most effective, enabling a one-step process without the need for post-milling. Conclusions: SD techniques, particularly using Soluplus and spray drying, effectively enhance the solubility and absorption of ADG. This insight is vital for the future development of ADG-SD matrices. Full article
(This article belongs to the Special Issue Recent Progress in Solid Dispersion Technology, 3rd Edition)
Show Figures

Figure 1

Back to TopTop