Lipid-Based Nanoparticulate Drug Delivery Systems: Preparation, Biomedical Applications, and Evaluation

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 6507

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
Interests: pharmaceutical nanothechnology; nanosized drug delivery carriers; nanovesicles; targeted drug and gene delivery; pharmacokinetics

E-Mail Website
Guest Editor
Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
Interests: emulsion polymerization; drug stability; pharmaceutical nanotechnology; pharmaceutical research and development; pharmacokinetics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
Interests: vesicular systems; niosomes; stimuli-sensitive nanocarriers; inorganic nanoparticles
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
Interests: drug stability; silver nanoparticles; polymeric nanoparticles; pharmaceutical analysis; transdermal and mucosal drug permeation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lipid-based nanoparticulate drug delivery systems (i.e., liposomes, nanostructured lipid carriers, solid lipid nanoparticles, niosomes, etc.) have captured significant attention at both preclinical and clinical levels due to their advantageous characteristics, including biocompatibility, safety, scaling up feasibility, as well as their promising biopharmaceutical performance and therapeutic outcomes. Lipid-based nanosystems are suitable carriers for various types of cargo—drugs, phytoconstituents, nucleic acids, and monoclonal antibodies—and are capable of improving their unfavorable physicochemical/pharmacokinetic characteristics and stability issues. These nanoscale systems exhibit the potential to enhance drug bioavailability, to provide a controlled release profile, and to achieve targeted delivery via suitable surface tailoring by tuning their physicochemical characteristics at the (pre)formulation stage.

This Special Issue aims to summarize recent advances in lipid-based nanoparticulate drug delivery systems to highlight some of the future directions in this research area. Submissions of original research and review articles demonstrating progress in the field are welcome.

Prof. Dr. Denitsa Momekova
Dr. Velichka Andonova
Dr. Viliana Eduardova Gugleva
Dr. Nadezhda Ivanova
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • liposomes
  • nanoemulsions
  • nanostructured lipid carriers
  • niosomes
  • solid lipid nanoparticles
  • targeted drug delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 4849 KiB  
Article
Solid Lipid Nanoparticles Loaded with Dexamethasone Palmitate for Pulmonary Inflammation Treatment by Nebulization Approach
by Hsin-Hung Chen, Chen-Hsiang Sang, Chang-Wei Chou, Yi-Ting Lin, Yi-Shou Chang and Hsin-Cheng Chiu
Pharmaceutics 2024, 16(7), 878; https://doi.org/10.3390/pharmaceutics16070878 - 29 Jun 2024
Viewed by 1372
Abstract
Pneumonia stands as the leading infectious cause of childhood mortality annually, underscoring its significant impact on pediatric health. Although dexamethasone (DXMS) is effective for treating pulmonary inflammation, its therapeutic potential is compromised by systemic side effects and suboptimal carrier systems. To address this [...] Read more.
Pneumonia stands as the leading infectious cause of childhood mortality annually, underscoring its significant impact on pediatric health. Although dexamethasone (DXMS) is effective for treating pulmonary inflammation, its therapeutic potential is compromised by systemic side effects and suboptimal carrier systems. To address this issue, the current study introduces solid lipid nanoparticles encapsulating hydrophobic dexamethasone palmitate (DXMS-Pal-SLNs) as an anti-inflammatory nanoplatform to treat pneumonia. The specialized nanoparticle formulation is characterized by high drug loading efficiency, low drug leakage and excellent colloidal stability in particular during nebulization and is proficiently designed to target alveolar macrophages in deep lung regions via local delivery with the nebulization administration. In vitro analyses revealed substantial reductions in the secretions of tumor necrosis factor-α and interleukin-6 from alveolar macrophages, highlighting the potential efficacy of DXMS-Pal-SLNs in alleviating pneumonia-related inflammation. Similarly, in vivo experiments showed a significant reduction in the levels of these cytokines in the lungs of mice experiencing lipopolysaccharide-induced pulmonary inflammation after the administration of DXMS-Pal-SLNs via nebulization. Furthermore, the study demonstrated that DXMS-Pal-SLNs effectively control acute infections without causing pulmonary infiltration or excessive recruitment of immunocytes in lung tissues. These findings highlight the potential of nebulized DXMS-Pal-SLNs as a promising therapeutic strategy for mitigating pneumonia-related inflammations. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 1651 KiB  
Review
Drug Release via Ultrasound-Activated Nanocarriers for Cancer Treatment: A Review
by Khaled Armouch Al Refaai, Nour A. AlSawaftah, Waad Abuwatfa and Ghaleb A. Husseini
Pharmaceutics 2024, 16(11), 1383; https://doi.org/10.3390/pharmaceutics16111383 - 27 Oct 2024
Viewed by 1159
Abstract
Conventional cancer chemotherapy often struggles with safely and effectively delivering anticancer therapeutics to target tissues, frequently leading to dose-limiting toxicity and suboptimal therapeutic outcomes. This has created a need for novel therapies that offer greater efficacy, enhanced safety, and improved toxicological profiles. Nanocarriers [...] Read more.
Conventional cancer chemotherapy often struggles with safely and effectively delivering anticancer therapeutics to target tissues, frequently leading to dose-limiting toxicity and suboptimal therapeutic outcomes. This has created a need for novel therapies that offer greater efficacy, enhanced safety, and improved toxicological profiles. Nanocarriers are nanosized particles specifically designed to enhance the selectivity and effectiveness of chemotherapy drugs while reducing their toxicity. A subset of drug delivery systems utilizes stimuli-responsive nanocarriers, which enable on-demand drug release, prevent premature release, and offer spatial and temporal control over drug delivery. These stimuli can be internal (such as pH and enzymes) or external (such as ultrasound, magnetic fields, and light). This review focuses on the mechanics of ultrasound-induced drug delivery and the various nanocarriers used in conjunction with ultrasound. It will also provide a comprehensive overview of key aspects related to ultrasound-induced drug delivery, including ultrasound parameters and the biological effects of ultrasound waves. Full article
Show Figures

Figure 1

32 pages, 3166 KiB  
Review
Review of Gold Nanoparticles: Synthesis, Properties, Shapes, Cellular Uptake, Targeting, Release Mechanisms and Applications in Drug Delivery and Therapy
by Joel Georgeous, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Pharmaceutics 2024, 16(10), 1332; https://doi.org/10.3390/pharmaceutics16101332 - 16 Oct 2024
Viewed by 2287
Abstract
The remarkable versatility of gold nanoparticles (AuNPs) makes them innovative agents across various fields, including drug delivery, biosensing, catalysis, bioimaging, and vaccine development. This paper provides a detailed review of the important role of AuNPs in drug delivery and therapeutics. We begin by [...] Read more.
The remarkable versatility of gold nanoparticles (AuNPs) makes them innovative agents across various fields, including drug delivery, biosensing, catalysis, bioimaging, and vaccine development. This paper provides a detailed review of the important role of AuNPs in drug delivery and therapeutics. We begin by exploring traditional drug delivery systems (DDS), highlighting the role of nanoparticles in revolutionizing drug delivery techniques. We then describe the unique and intriguing properties of AuNPs that make them exceptional for drug delivery. Their shapes, functionalization, drug-loading bonds, targeting mechanisms, release mechanisms, therapeutic effects, and cellular uptake methods are discussed, along with relevant examples from the literature. Lastly, we present the drug delivery applications of AuNPs across various medical domains, including cancer, cardiovascular diseases, ocular diseases, and diabetes, with a focus on in vitro and in vivo cancer research. Full article
Show Figures

Figure 1

25 pages, 5468 KiB  
Review
A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System
by Sunggu Kang, Yeeun Woo, Yoseph Seo, Daehyeon Yoo, Daeryul Kwon, Hyunjun Park, Sang Deuk Lee, Hah Young Yoo and Taek Lee
Pharmaceutics 2024, 16(9), 1171; https://doi.org/10.3390/pharmaceutics16091171 - 5 Sep 2024
Viewed by 893
Abstract
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, [...] Read more.
Although various chemically synthesized materials are essential in medicine, food, and agriculture, they can exert unexpected side effects on the environment and human health by releasing certain toxic chemicals. Therefore, eco-friendly and biocompatible biomaterials based on natural resources are being actively explored. Recently, biosilica derived from diatoms has attracted attention in various biomedical fields, including drug delivery systems (DDS), due to its uniform porous nano-pattern, hierarchical structure, and abundant silanol functional groups. Importantly, the structural characteristics of diatom biosilica improve the solubility of poorly soluble substances and enable sustained release of loaded drugs. Additionally, diatom biosilica predominantly comprises SiO2, has high biocompatibility, and can easily hybridize with other DDS platforms, including hydrogels and cationic DDS, owing to its strong negative charge and abundant silanol groups. This review explores the potential applications of various diatom biosilica-based DDS in various biomedical fields, with a particular focus on hybrid DDS utilizing them. Full article
Show Figures

Figure 1

Back to TopTop