3D Printing—Current Pharmaceutical Applications and Future Directions

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Pharmaceutical Technology, Manufacturing and Devices".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 830

Special Issue Editors


E-Mail Website
Guest Editor
1. Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
2. Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca 8000, Argentina
Interests: pharmaceutical 3D printing; food 3D printing; pharmaceutical continuous manufacturing; solid processes; modeling; particulate systems

E-Mail Website
Guest Editor
Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
Interests: human and veterinary pharmaceuticals; advanced drug delivery; cancer; infection; 3D printing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina
2. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca 8000, Argentina
Interests: pharmaceutical 3D printing; drug delivery; spray drying; pharmaceutical porous particles

Special Issue Information

Dear Colleagues,

Three-dimensional printing (3DP) is one of the most widespread and promising emerging technologies, representing a dynamic field of creativity and innovation with the potential to significantly impact people's lives. One exciting application is the development of personalized products in the pharmaceutical sector. This technology transforms a 3D digital model into a physical object through layer-by-layer material deposition, controlled by software. This method of constructing gives significant potential for developing pharmaceutical forms with flexible dosing, unique geometric shapes, combinations of multiple drugs in a single unit, and the formulation of modified release profiles. Factors driving the growth of the printed drug market include extensive R&D activities and the adoption of personalized medications. The implementation of 3DP in creating tailored drug therapies opens promising opportunities to improve patient care. This Special Issue welcomes both original and review articles that explore current applications and future directions in the 3D printing of pharmaceutical products.

Dr. Ivana M. Cotabarren
Prof. Dr. Sanjay Garg
Dr. Loreana C. Gallo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing
  • pharmaceutical products
  • 3D printers
  • personalized drug delivery
  • additive manufacturing
  • new materials for 3D printing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5778 KiB  
Article
3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti-Trypanosoma cruzi Studies
by Giselle R. Bedogni, Ana Luiza Lima, Idejan P. Gross, Tatiana Prata Menezes, Andre Talvani, Marcilio Cunha-Filho and Claudio J. Salomon
Pharmaceutics 2025, 17(1), 80; https://doi.org/10.3390/pharmaceutics17010080 - 9 Jan 2025
Viewed by 561
Abstract
Background/Objectives: Chagas disease is a neglected tropical disease caused by infection with the parasite Trypanosoma cruzi. Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed [...] Read more.
Background/Objectives: Chagas disease is a neglected tropical disease caused by infection with the parasite Trypanosoma cruzi. Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand. Methods: Different pharmaceutical-grade polymers were evaluated through film casting, and those with promising nifurtimox amorphization capacity were further used to prepare filaments by hot melt extrusion. The printability of the obtained filaments was tested, and the polyvinyl alcohol filament was further used for printing tablets containing 120 and 60 mg of nifurtimox. Results: Three-dimensional tablets showed a remarkable improvement in the drug dissolution rate compared to commercial tablets and a dissolution efficiency 2.8 times higher. In vivo studies were carried out on Swiss mice. Parasitemia curves of nifurtimox printed tablets were significantly superior to the pure drug. Moreover, NFX 3D tablets provided a similar Trypanosoma cruzi reduction in plasmatic concentration to benznidazole, the gold-standard drug for acute-phase treatment of the Chagas disease. Conclusions: The findings of this work showed that hot melt extrusion coupled with 3D printing is a promising alternative for increasing nifurtimox biopharmaceutical properties and an attractive approach for personalized medicine. Full article
Show Figures

Figure 1

Back to TopTop