Synthesis, Design, Preparation and Processing of Functional Polymer Composites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 31 March 2025 | Viewed by 726

Special Issue Editor


E-Mail Website
Guest Editor
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
Interests: 3D textile composites; 3D textile design; braided composites; impact deformation and failure; interface control; carbon nanotubes; electromagnetic shielding and absorption; vibration analysis; mechanical properties
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Significant progress has been made in the synthesis, design, preparation, characterization and processing of polymer composites, with functional ones incorporated in promising applications. Today, polymer composites have become lighter, cheaper, more durable and more versatile, as well as more intelligent and multifunctional. By creating new properties using suitable fillers and matrices, functional polymer composites can meet the most demanding standards of users, especially in high-tech industries.

This Special Issue aims to collect articles on the latest progress in the preparation methods, design, properties, structures, characterization methods and promising applications of functional polymer composites. It covers potential applications in various fields such as anticorrosion, photocatalysts, absorbents, renewable energy, energy storage systems, structural batteries and energy devices, solar panels, smart textiles, construction, water treatment, and electrical and electronic devices. Experts and scholars involved in advanced modeling, simulation and experimental processes for the design, preparation and performance prediction of functional polymer composites as well as those conducting experimental studies involving these polymer composites are welcome.

Dr. Xiaoyuan Pei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer composite
  • synthesis
  • design
  • preparation
  • characterization
  • processing

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2765 KiB  
Article
Eco-Friendly Castor Oil-Based Composite with High Clam Shell Powder Content
by Fangqing Weng, Kui Jian, Yazhou Yi, Peirui Zhang, Ernest Koranteng, Qing Huang, Jiahui Liu and Guoping Zeng
Polymers 2024, 16(23), 3232; https://doi.org/10.3390/polym16233232 - 21 Nov 2024
Viewed by 185
Abstract
Eco-friendly castor oil-based composites with a high content of clam shell powder were prepared in this study. Biomass composites were prepared by blending castor-oil-based polyurethane prepolymer (COPU) with a filler consisting of high-content clam shell powder (CSP), named CSP-COPU. The structure, microstructure, mechanical [...] Read more.
Eco-friendly castor oil-based composites with a high content of clam shell powder were prepared in this study. Biomass composites were prepared by blending castor-oil-based polyurethane prepolymer (COPU) with a filler consisting of high-content clam shell powder (CSP), named CSP-COPU. The structure, microstructure, mechanical properties, and thermal stability of the composites were investigated. The results showed that even at a loading as high as 75 wt.% of the CSP filler, the composite still exhibited good tensile strength and elongation at break. Furthermore, compared with the CSP-COPU composites, TCOS-50 synthesized through blending OH-terminated castor oil-based polyurethane prepolymer (TCOPU) and CSP filler proved that the chemical bond between COPU containing terminal -NCO groups and CSP containing active -OH groups was the key reason to obtaining the composite material with desirable properties. These findings provide prospects for applying biomass-loaded CSP-COPU composites in the packaging industry while contributing to carbon peak achievement and carbon neutrality. Full article
Show Figures

Figure 1

23 pages, 7207 KiB  
Article
Water-Soluble Polyglycidol-Grafted Ladder Calix Resorcinarene Oligomers with Open Chain and Cyclic Topologies: Synthesis, Characteristics, and Biological Evaluation
by Hristo Penchev, Erik Dimitrov, Christo Novakov, Emi Haladjova, Ralitsa Veleva, Veselina Moskova-Doumanova, Tanya Topouzova-Hristova and Stanislav Rangelov
Polymers 2024, 16(22), 3219; https://doi.org/10.3390/polym16223219 - 20 Nov 2024
Viewed by 366
Abstract
Ladder oligomers containing calixarene skeletons in the main chain—calix[4]resorcinarene (CRA) ladder macromolecules with open chain and cyclic macromolecules with double ring-like (Noria-type) topologies—bring particular research attention as functional materials with various applications. However, there is still a remarkable lack of studies into the [...] Read more.
Ladder oligomers containing calixarene skeletons in the main chain—calix[4]resorcinarene (CRA) ladder macromolecules with open chain and cyclic macromolecules with double ring-like (Noria-type) topologies—bring particular research attention as functional materials with various applications. However, there is still a remarkable lack of studies into the synthesis of fully water-soluble derivatives of these interesting macromolecules. Research on this topic would allow their bio-based research and application niche to be at least revealed. In the present study, a strategy for the synthesis of water-soluble polyglycidol-derivatized calix resorcinarene ladder oligomers with open chain and cyclic structures is introduced. A grafting from approach was used to build branched or linear polyglycidol chains from the ladder scaffolds. The novel structures were synthesized in quantitative yields and fully characterized by NMR, FTIR and UV–vis spectroscopy, gel permeation chromatography, MALDI-TOF mass spectrometry, analytical ultracentrifugation, and static light scattering to obtain the molar mass characteristics and composition. The biocompatibility and toxicity of the two polyglycidol-derivatized oligomers were investigated and the concentration dependence of the survival of three cell lines of human origin determined. The selective apoptosis effect at relatively low dissolve concentrations toward two kinds of cancerous cell lines was found. Full article
Show Figures

Figure 1

Back to TopTop