Sustainable Polymers: Synthesis and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Polymer Science".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 1531

Special Issue Editors


E-Mail Website
Guest Editor
Department of Environmental Engineering, Università della Calabria, Via P. Bucci, 87036 Rende, CS, Italy
Interests: sustainable chemistry; environmental chemistry; medicinal chemistry; macromolecules
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
Interests: fungal bioprocessing; economical bioreactor designs; sustainable fermentation technique; food biotechnology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Centro de Investigacion y de Estudios Avanzados, Mexico City, Mexico
Interests: Cancer Therapy; Hyperthermia; Biosensors; Microfluidics and Nanofluidics; organ-on-a-chip

Special Issue Information

Dear Colleagues,

The growing demand for finite fossil resources, the economy and the relative environmental pollution has produced a growing awareness of a change. The damage caused to the environment over time is increasingly evident, and climate change is proof of this. The development of alternative and environmentally friendly innovations, combined with the use of natural, renewable and sustainable resources, is proving to be the most promising industrial strategy for the future. In this Special Issue, contributions regarding the production and use of synthetic and natural polymers or a combination of them, which come from green processes, are welcome. In addition to innovative production methods, the development of new applications can also fall within the topic, including but not limited to engineering, pharmaceuticals, food, robotics and the environment.

Dr. Fabrizio Olivito
Dr. Wan Abd Al Qadr Imad Wan-Mohtar
Dr. Goldie Harikrishna Oza
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sustainability
  • innovation
  • polymers
  • applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 1898 KiB  
Article
Surface Wetting Behaviors of Hydroxyl-Terminated Polybutadiene: Molecular Mechanism and Modulation
by Xinke Zhang, Zhikun Liu, Bing Yuan and Kai Yang
Polymers 2024, 16(21), 3085; https://doi.org/10.3390/polym16213085 - 31 Oct 2024
Viewed by 425
Abstract
The surface wetting or coating of materials by polymers is crucial for designing functional interfaces and various industrial applications. However, the underlying mechanisms remain elusive. In this study, the wetting behavior of hydroxyl-terminated polybutadiene (HTPB) on a quartz surface was systematically investigated using [...] Read more.
The surface wetting or coating of materials by polymers is crucial for designing functional interfaces and various industrial applications. However, the underlying mechanisms remain elusive. In this study, the wetting behavior of hydroxyl-terminated polybutadiene (HTPB) on a quartz surface was systematically investigated using computer simulation methods. A notable tip-dominant surface adsorption mode of HTPB was identified, where the hydroxyl group at the end of the polymer chain binds to the surface to initiate the wetting process. Moreover, it was found that with the increase in the degree of polymerization (e.g., from DP = 10 to 30), spontaneous adsorption of HTPB becomes increasingly difficult, with a three-fold increase in the adsorption time. These results suggest a competition mechanism between enthalpy (e.g., adhesion between the polymer and the surface) and entropy (e.g., conformational changes in polymer chains) that underlies the wetting behavior of HTPB. Based on this mechanism, two strategies were employed: altering the degree of polymerization of HTPB and/or regulating the amount of interfacial water molecules (e.g., above or below the threshold amount of 350 on a 10 × 10 nm2 surface). These strategies effectively modulate HTPB’s surface wetting process. This study provides valuable insights into the mechanisms underlying the surface adsorption behavior of HTPB and offers guidance for manipulating polymer wetting processes at interfaces. Full article
(This article belongs to the Special Issue Sustainable Polymers: Synthesis and Applications)
Show Figures

Figure 1

14 pages, 4050 KiB  
Article
Easily Applicable Superhydrophobic Composite Coating with Improved Corrosion Resistance and Delayed Icing Properties
by Binbin Zhang, Lixia Zhao and Baorong Hou
Polymers 2024, 16(19), 2800; https://doi.org/10.3390/polym16192800 - 3 Oct 2024
Viewed by 800
Abstract
Mitigating the adverse effects of corrosion failure and low-temperature icing on aluminum (Al) alloy materials poses significant research challenges. The facile fabrication of bioinspired superhydrophobic materials offers a promising solution to the issues of corrosion and icing. In this study, we utilized laboratory-collected [...] Read more.
Mitigating the adverse effects of corrosion failure and low-temperature icing on aluminum (Al) alloy materials poses significant research challenges. The facile fabrication of bioinspired superhydrophobic materials offers a promising solution to the issues of corrosion and icing. In this study, we utilized laboratory-collected candle soot (CS), hydrophobic fumed SiO2, and epoxy resin (EP) to create a HF-SiO2@CS@EP superhydrophobic coating on Al alloy surfaces using a spray-coating technique. Various characterization techniques, including contact angle meter, high-speed camera, FE-SEM, EDS, FTIR, and XPS, were employed to investigate surface wettability, morphologies, and chemical compositions. Moreover, a 3.5 wt.% NaCl solution was used as a corrosive medium to evaluate the corrosion resistance of the uncoated and coated samples. The results show that the capacitive arc radius, charge transfer resistance, and low-frequency modulus of the coated Al alloy significantly increased, while the corrosion potential (Ecorr) shifted positively and the corrosion current (Icorr) decreased by two orders of magnitude, indicating improved corrosion resistance. Additionally, an investigation of ice formation on the coated Al alloy at −10 °C revealed that the freezing time was 4.75 times longer and the ice adhesion strength was one-fifth of the uncoated Al alloy substrate, demonstrating superior delayed icing and reduced ice adhesion strength performance. Full article
(This article belongs to the Special Issue Sustainable Polymers: Synthesis and Applications)
Show Figures

Figure 1

Back to TopTop