polymers-logo

Journal Browser

Journal Browser

Polymer Materials in Dentistry

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 14147

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

In the field of dentistry, polymeric biomaterials are gaining popularity due to their desirable characteristics such as biocompatibility, easy handling, and low cost. These materials are used to treat various dental and maxillofacial diseases and defects, including dental caries, partial and complete edentulousness, and maxillofacial defects, among others. The use of polymeric materials in the oral cavity is particularly noteworthy for their drug delivery capability and antimicrobial properties, as well as their application in preventive, reconstructive, and regenerative therapies. With the advancement of 3D printing technologies, new and promising alternatives in the fields of dentistry and medicine are emerging. These 3D printing resin materials offer improved physical, mechanical, and antibacterial properties for oral and medical appliances. However, there is a lack of data on polymeric biomaterials for oral and maxillofacial reconstructive treatment. To address this knowledge gap, this Special Issue invites researchers and clinicians from various disciplines, including material sciences, dentistry, medicine, 3D printing, and CAD/CAM, to submit their scientific findings in the form of original research articles and review articles. The aim of this Special Issue is to highlight the latest achievements in the field of polymeric sciences for oral treatment.

Prof. Dr. Gaetano Paolone
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymeric biomaterials
  • dentistry
  • dental diseases
  • reconstructive
  • restorations
  • 3D printing
  • resin materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 1126 KiB  
Article
Comparison of a Nanofiber-Reinforced Composite with Different Types of Composite Resins
by Zümrüt Ceren Özduman, Burcu Oglakci, Derya Merve Halacoglu Bagis, Binnur Aydogan Temel and Evrim Eliguzeloglu Dalkilic
Polymers 2023, 15(17), 3628; https://doi.org/10.3390/polym15173628 - 1 Sep 2023
Cited by 5 | Viewed by 2108
Abstract
 The aim of this study was a comprehensive evaluation and comparison of the physical and mechanical properties of a newly developed nano-sized hydroxyapatite fiber-reinforced composite with other fiber-reinforced and particle-filled composites. Commercially available eight composite resins (3 fiber-reinforced and 5 particle-filled) were used: [...] Read more.
 The aim of this study was a comprehensive evaluation and comparison of the physical and mechanical properties of a newly developed nano-sized hydroxyapatite fiber-reinforced composite with other fiber-reinforced and particle-filled composites. Commercially available eight composite resins (3 fiber-reinforced and 5 particle-filled) were used: Fiber-reinforced composites: (1) NovaPro Fill (Nanova): newly developed nano-sized hydroxyapatite fiber-reinforced composite (nHAFC-NF); (2) Alert (Pentron): micrometer-scale glass fiber-reinforced composite (µmGFC-AL); (3) Ever X Posterior (GC Corp): millimeter-scale glass fiber-reinforced composite (mmGFC-EX); Particle-filled composites: (4) SDR Plus (Dentsply) low-viscosity bulk-fill (LVBF-SDR); (5) Estelite Bulk Fill (Tokuyama Corp.) low-viscosity bulk-fill (LVBF-EBF); (6) Filtek Bulk Fill Flow (3M ESPE) low-viscosity bulk-fill (LVBF-FBFF); (7) Filtek Bulk Fill (3M ESPE) high-viscosity bulk-fill (HVBF-FBF); and (8) Filtek Z250 (3M ESPE): microhybrid composite (µH-FZ). For Vickers microhardness, cylindrical-shaped specimens (diameter: 4 mm, height: 2 mm) were fabricated (n = 10). For the three-point bending test, bar-shaped (2 × 2 × 25 mm) specimens were fabricated (n = 10). Flexural strength and modulus elasticity were calculated. AcuVol, a video image device, was used for volumetric polymerization shrinkage (VPS) evaluations (n = 6). The polymerization degree of conversion (DC) was measured on the top and bottom surfaces with Fourier Transform Near-Infrared Spectroscopy (FTIR; n = 5). The data were statistically analyzed using one-way ANOVA, Tukey HSD, Welsch ANOVA, and Games–Howell tests (p < 0.05). Pearson coefficient correlation was used to determine the linear correlation. Group µH-FZ displayed the highest microhardness, flexural strength, and modulus elasticity, while Group HVBF-FBF exhibited significantly lower VPS than other composites. When comparing the fiber-reinforced composites, Group mmGFC-EX showed significantly higher microhardness, flexural strength, modulus elasticity, and lower VPS than Group nHAFC-NF but similar DC. A strong correlation was determined between microhardness, VPS and inorganic filler by wt% and vol% (r = 0.572–0.877). Fiber type and length could affect the physical and mechanical properties of fibers containing composite resins.   Full article
(This article belongs to the Special Issue Polymer Materials in Dentistry)
Show Figures

Figure 1

9 pages, 294 KiB  
Article
Effects of Translucency and Thickness of Lithium Disilicate-Reinforced Glass-Ceramic Veneers on the Degree of Conversion of a Purely Light-Curing Bonding Resin: An In Vitro Study
by Anthony Poca, Kenza De Peretti Della Rocca, Karim Nasr, Romain Ducassé and Thibault Canceill
Polymers 2023, 15(7), 1617; https://doi.org/10.3390/polym15071617 - 24 Mar 2023
Cited by 1 | Viewed by 1997
Abstract
The objective of this study was to evaluate the variations in the degree of conversion (DC) of a light-curing composite resin when the thickness or the translucency of lithium disilicate-enriched glass-ceramic veneers are modified. IPS e. max® CAD blocks of the MT-A2, [...] Read more.
The objective of this study was to evaluate the variations in the degree of conversion (DC) of a light-curing composite resin when the thickness or the translucency of lithium disilicate-enriched glass-ceramic veneers are modified. IPS e. max® CAD blocks of the MT-A2, LT-A2 and MO1 types were cut to obtain four slices with thicknesses ranging from 0.6 mm to 1 mm. A strictly light-curing composite resin (G-aenial Universal Injectable) was injected in the empty part of a silicone mold so that the veneer could then be inserted under digital pressure to the stop. A 40 s light cure (1400 mW/cm2) was then performed. Resin samples were analyzed using Fourier transform infrared (FTIR) spectroscopy. When the degree of translucency of the ceramic was modified, a decrease in the resin conversion rate was noted, but with a non-significant global p-value (p = 0.062). Interestingly, the degree of conversion of the light-curing composite resin was also modified when the ceramic’s thickness increased, especially when it was over 1 mm (DC0.6 > DC0.7 > DC0.8 > DC1; p < 0.0001). This confirms that the degree of conversion of a bonding material is very dependent on the ceramic’s thickness. Contradictory data are, however, found in the literature, where there are reports of an absence of a difference between the DC obtained with thicknesses of ceramics of 0.7 and 2 mm. Full article
(This article belongs to the Special Issue Polymer Materials in Dentistry)
13 pages, 4293 KiB  
Article
Translucency of CAD/CAM and 3D Printable Composite Materials for Permanent Dental Restorations
by Alessandro Vichi, Dario Balestra, Nicola Scotti, Chris Louca and Gaetano Paolone
Polymers 2023, 15(6), 1443; https://doi.org/10.3390/polym15061443 - 15 Mar 2023
Cited by 33 | Viewed by 3652
Abstract
The aim of the study was to compare the translucency of CAD/CAM and printable composite materials for fixed dental prostheses (FDP). Eight A3 composite materials (7 CAD/CAM and 1 printable) for FPD were used to prepare a total of 150 specimens. CAD/CAM materials, [...] Read more.
The aim of the study was to compare the translucency of CAD/CAM and printable composite materials for fixed dental prostheses (FDP). Eight A3 composite materials (7 CAD/CAM and 1 printable) for FPD were used to prepare a total of 150 specimens. CAD/CAM materials, all characterized by two different opacity levels, were: Tetric CAD (TEC) HT/MT; Shofu Block HC (SB) HT/LT; Cerasmart (CS) HT/LT; Brilliant Crios (BC) HT/LT; Grandio Bloc (GB) HT/LT; Lava Ultimate (LU) HT/LT, Katana Avencia (KAT) LT/OP. The printable system was Permanent Crown Resin. 1.0 mm-thick specimens were cut from commercial CAD/CAM blocks using a water-cooled diamond saw, or 3D printed. Measurements were performed using a benchtop spectrophotometer with an integrating sphere. Contrast Ratio (CR), Translucency Parameter (TP), and Translucency Parameter 00 (TP00) were calculated. One Way ANOVA followed by Tukey test for post hoc were performed for each of the translucency system. The tested materials exhibited a wide range of translucency values. CR ranged from 59 to 84, TP from 15.75 to 8.96, TP00 from 12.47 to 6.31. KAT(OP) and CS(HT) showed, respectively, the lowest and highest translucency for CR, TP and TP00. Due to the significant range of reported translucency values, clinicians should exercise caution when choosing the most appropriate material, especially considering factors such as substrate masking, and the necessary clinical thickness. Full article
(This article belongs to the Special Issue Polymer Materials in Dentistry)
Show Figures

Figure 1

Review

Jump to: Research

31 pages, 1689 KiB  
Review
Different Polymers for the Base of Removable Dentures? Part II: A Narrative Review of the Dynamics of Microbial Plaque Formation on Dentures
by Pierre Le Bars, Alain Ayepa Kouadio, Yves Amouriq, François Bodic, Pauline Blery and Octave Nadile Bandiaky
Polymers 2024, 16(1), 40; https://doi.org/10.3390/polym16010040 - 21 Dec 2023
Cited by 5 | Viewed by 2739
Abstract
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge [...] Read more.
This review focuses on the current disparities and gaps in research on the characteristics of the oral ecosystem of denture wearers, making a unique contribution to the literature on this topic. We aimed to synthesize the literature on the state of current knowledge concerning the biological behavior of the different polymers used in prosthetics. Whichever polymer is used in the composition of the prosthetic base (poly methyl methacrylate acrylic (PMMA), polyamide (PA), or polyether ether ketone (PEEK)), the simple presence of a removable prosthesis in the oral cavity can disturb the balance of the oral microbiota. This phenomenon is aggravated by poor oral hygiene, resulting in an increased microbial load coupled with the reduced salivation that is associated with older patients. In 15–70% of patients, this imbalance leads to the appearance of inflammation under the prosthesis (denture stomatitis, DS). DS is dependent on the equilibrium—as well as on the reciprocal, fragile, and constantly dynamic conditions—between the host and the microbiome in the oral cavity. Several local and general parameters contribute to this balance. Locally, the formation of microbial plaque on dentures (DMP) depends on the phenomena of adhesion, aggregation, and accumulation of microorganisms. To limit DMP, apart from oral and lifestyle hygiene, the prosthesis must be polished and regularly immersed in a disinfectant bath. It can also be covered with an insulating coating. In the long term, relining and maintenance of the prosthesis must also be established to control microbial proliferation. On the other hand, several general conditions specific to the host (aging; heredity; allergies; diseases such as diabetes mellitus or cardiovascular, respiratory, or digestive diseases; and immunodeficiencies) can make the management of DS difficult. Thus, the second part of this review addresses the complexity of the management of DMP depending on the polymer used. The methodology followed in this review comprised the formulation of a search strategy, definition of the inclusion and exclusion criteria, and selection of studies for analysis. The PubMed database was searched independently for pertinent studies. A total of 213 titles were retrieved from the electronic databases, and after applying the exclusion criteria, we selected 84 articles on the possible microbial interactions between the prosthesis and the oral environment, with a particular emphasis on Candida albicans. Full article
(This article belongs to the Special Issue Polymer Materials in Dentistry)
Show Figures

Figure 1

18 pages, 2672 KiB  
Review
Different Polymers for the Base of Removable Dentures? Part I: A Narrative Review of Mechanical and Physical Properties
by Pierre Le Bars, Octave Nadile Bandiaky, Laurent Le Guéhennec, Roselyne Clouet and Alain Ayepa Kouadio
Polymers 2023, 15(17), 3495; https://doi.org/10.3390/polym15173495 - 22 Aug 2023
Cited by 7 | Viewed by 2859
Abstract
Even before considering their introduction into the mouth, the choice of materials for the optimization of the prosthesis depends on specific parameters such as their biocompatibility, solidity, resistance, and longevity. In the first part of this two-part review, we approach the various mechanical [...] Read more.
Even before considering their introduction into the mouth, the choice of materials for the optimization of the prosthesis depends on specific parameters such as their biocompatibility, solidity, resistance, and longevity. In the first part of this two-part review, we approach the various mechanical characteristics that affect this choice, which are closely related to the manufacturing process. Among the materials currently available, it is mainly polymers that are suitable for this use in this field. Historically, the most widely used polymer has been polymethyl methacrylate (PMMA), but more recently, polyamides (nylon) and polyether ether ketone (PEEK) have provided interesting advantages. The incorporation of certain molecules into these polymers will lead to modifications aimed at improving the mechanical properties of the prosthetic bases. In the second part of the review, the safety aspects of prostheses in the oral ecosystem (fragility of the undercuts of soft/hard tissues, neutral pH of saliva, and stability of the microbiota) are addressed. The microbial colonization of the prosthesis, in relation to the composition of the material used and its surface conditions (roughness, hydrophilicity), is of primary importance. Whatever the material and manufacturing process chosen, the coating or finishes dependent on the surface condition remain essential (polishing, non-stick coating) for limiting microbial colonization. The objective of this narrative review is to compile an inventory of the mechanical and physical properties as well as the clinical conditions likely to guide the choice between polymers for the base of removable prostheses. Full article
(This article belongs to the Special Issue Polymer Materials in Dentistry)
Back to TopTop