Application of Polymeric Nanocomposites in Agriculture: Sustainable Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 December 2024 | Viewed by 2440

Special Issue Editor


E-Mail Website
Guest Editor
Grupo de Compósitos e Nanocompósitos Híbridos (GCNH), School of Engineering, São Paulo State University (Unesp), Ilha Solteira 15385-000, SP, Brazil
Interests: nanocomposite; packaging; edible films; bacterial cellulose; polymers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The application of environmentally safe nanocomposite materials has significantly increased in recent years. Thus, interest in the study of natural polymers applied to improve agriculture by reusing waste as a source of raw material has grown substantially as well. Applications can vary, such as materials for active food packaging, materials with a controlled release of pesticides or fertilizers, and nanostructures applied as reinforcement for more sustainable packaging, among others. The scope of this Special Issue includes the synthesis, processing, and characterization of novel nanocomposites based on natural polymers with potential interest in agriculture. We encourage submissions where practical applications are presented, utilizing byproducts with sustainable preparation techniques.

Prof. Dr. Marcia Regina de Moura Aouada
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural polymers
  • nanocomposite
  • agriculture
  • reused material

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 7456 KiB  
Article
Synthesis and Evaluation of Starch-Grafted-Poly[(Acrylic Acid)-Co-Acrylamide] Based Nanoclay Polymer Composite Fertilizers for Slow Release of Nitrogen in Soil
by Ravi Saini, Kanchikeri Math Manjaiah, Dibakar Roy, Rajesh Kumar, Sandeep Gawdiya, Siyaram Meena, A. Naveenkumar, Anil Kumar, Salah El-Hendawy and Mohamed A. Mattar
Polymers 2024, 16(21), 3013; https://doi.org/10.3390/polym16213013 - 27 Oct 2024
Viewed by 744
Abstract
Nitrogen (N) losses from conventional N fertilizers contribute to environmental degradation and low N use efficiency. Highlighting the need for slow-release fertilizers (SRFs) to mitigate these problems, this study aims to develop slow-release N fertilizers using starch-grafted-poly[(acrylic acid)-co-acrylamide] based nanoclay polymer [...] Read more.
Nitrogen (N) losses from conventional N fertilizers contribute to environmental degradation and low N use efficiency. Highlighting the need for slow-release fertilizers (SRFs) to mitigate these problems, this study aims to develop slow-release N fertilizers using starch-grafted-poly[(acrylic acid)-co-acrylamide] based nanoclay polymer composites (NCPCs) and investigate their efficacy for slow N delivery in soil. Three types of NCPCs, NCPC(A) (poly [(acrylic acid)-co-acrylamide]), NCPC(W) (wheat starch-grafted-poly[(acrylic acid)-co-acrylamide), and NCPC(M) (maize starch-grafted-poly[(acrylic acid)-co-acrylamide) were prepared and characterized using FTIR spectroscopy and X-ray diffraction techniques. N-release behaviour of the products was assessed under two distinct soils, i.e., Assam (Typic Hapludults, pH 4.2) and Delhi (Typic Haplustepts, pH 7.9) soils. Additionally, the effects of varying soil moisture and temperature levels on N release were studied in the Assam soil. The N-release kinetics of the synthesized fertilizers were assessed using zero-order, first-order, Higuchi, and Korsmeyer−Peppas models. Degradability of the NCPCs was evaluated by measuring evolved CO2–C under various soil conditions as an indicator of microbial degradation. The results indicated that NCPC fertilizers significantly slowed down the release of N compared to urea. According to the R2 values obtained, it was evident that the first-order kinetic model most accurately describes the N release from both urea and NCPC-based N fertilizers in the studied soils. Among the formulations, NCPC(A) exhibited the lowest N release (42.94–53.76%), followed by NCPC(M) (51.05–61.70%), NCPC(W) (54.86–67.75%), and urea (74.33–84.27%) after 21 days of incubation. The rate of N release was lower in the Assam soil compared to the Delhi soil, with higher soil moisture and temperature levels accelerating the release. Starch addition improved the biodegradability of the NCPCs, with NCPC(W) showing the highest cumulative CO2-C evolution (18.18–22.62 mg g−1), followed by NCPC(M) (15.54–20.97 mg g−1) and NCPC(A) (10.89–19.53 mg g−1). In conclusion, NCPC-based slow-release fertilizers demonstrated a more gradual N release compared to conventional urea and the inclusion of starch enhanced their degradability in the soil, which confirms their potential for sustainable agricultural applications. However, soil properties and environmental factors influenced the N release and degradation rates of NCPCs. Full article
Show Figures

Figure 1

12 pages, 1200 KiB  
Article
Development of New Edible Biodegradable Films Containing Camu-Camu and Agro-Industry Residue
by Huéberton Barbosa Naves, Ana Paula Stafussa, Grasiele Scaramal Madrona, Fabrício Cerizza Tanaka, Fauze Ahmad Aouada and Márcia Regina de Moura
Polymers 2024, 16(13), 1826; https://doi.org/10.3390/polym16131826 - 27 Jun 2024
Viewed by 1277
Abstract
The use of edible films has garnered significant interest in the food and environmental sectors due to their potential to prevent food deterioration and their biodegradability. This study aimed to develop and characterize edible films based on camu-camu residue, gelatin, and glycerol, evaluating [...] Read more.
The use of edible films has garnered significant interest in the food and environmental sectors due to their potential to prevent food deterioration and their biodegradability. This study aimed to develop and characterize edible films based on camu-camu residue, gelatin, and glycerol, evaluating their solubility, thermal, degradability, antioxidant, and water vapor permeability properties of the gelatin matrix. This is the first study incorporating camu-camu into a gelatin and glycerol matrix. The films produced with camu-camu residue were manageable and soluble, with some non-soluble residues, providing a shiny and well-presented appearance. In the biodegradation results, samples 3 and 4 appeared to degrade the most, being two of the three most affected samples in the triplicate. The films showed degradation modifications from the third day of the experiment. In the germination and plant growth analysis, sample 4 exhibited satisfactory development compared to the other samples, emerging as the sample with the best overall result in the analyses, attributed to a 13.84 cm increase in the growth of the upper part of the seedling. These results indicate that the produced materials have potential for food packaging applications. Full article
Show Figures

Figure 1

Back to TopTop