polymers-logo

Journal Browser

Journal Browser

Piezoelectric Polymers and Devices

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Processing and Engineering".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 662

Special Issue Editors


E-Mail Website
Guest Editor
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Interests: piezoelectric fiber composites; piezoelectric polymers; flexible piezoelectric device; modification of epoxy resin; piezoelectric sensor; piezoelectric actuator

E-Mail Website
Guest Editor
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Interests: lead-free piezoelectric materials; dielectric energy storage; ferroelectric nanomaterials and devices;material characterization;piezoelectric sensor and actuator

Special Issue Information

Dear Colleagues,

Piezoelectric polymers and devices have been widely studied and applied as sensors, energy harvesters, and generators with flexible and simple processes. In recent years, the research community has demonstrated a great deal of interest in finding developing new methods for the modification of piezoelectric polymers and composites, as well as developing new structures and functions for the devices.

This Special Issue on “Piezoelectric Polymers and Devices” is dedicated to the most recent research regarding the design, preparation and properties of piezoelectric polymers, piezoelectric composites and piezoelectric films. The issue also includes studies on the fabrication and applications of flexible piezoelectric devices.

Dr. Xi Yuan
Dr. Xuefan Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • piezoelectric polymer
  • polymer/ceramic composite
  • piezoelectric film
  • flexible piezoelectric device
  • structural modification

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 15700 KiB  
Article
All-Organic Quantum Dots-Boosted Energy Storage Density in PVDF-Based Nanocomposites via Dielectric Enhancement and Loss Reduction
by Ru Guo, Xi Yuan, Xuefan Zhou, Haiyan Chen, Haoran Xie, Quan Hu, Hang Luo and Dou Zhang
Polymers 2025, 17(3), 390; https://doi.org/10.3390/polym17030390 - 31 Jan 2025
Viewed by 351
Abstract
Dielectric capacitors offer immense application potential in advanced electrical and electronic systems with their unique ultrahigh power density. Polymer-based dielectric composites with high energy density are urgently needed to meet the ever-growing demand for the integration and miniaturization of electronic devices. However, the [...] Read more.
Dielectric capacitors offer immense application potential in advanced electrical and electronic systems with their unique ultrahigh power density. Polymer-based dielectric composites with high energy density are urgently needed to meet the ever-growing demand for the integration and miniaturization of electronic devices. However, the universal contradictory relationship between permittivity and breakdown strength in traditional ceramic/polymer nanocomposite still poses a huge challenge for a breakthrough in energy density. In this work, all-organic carbon quantum dot CDs were synthesized and introduced into a poly(vinylidene fluoride) PVDF polymer matrix to achieve significantly boosted energy storage performance. The ultrasmall and surface functionalized CDs facilitate the polar β-phase transition and crystallinity of PVDF polymer and modulate the energy level and traps of the nanocomposite. Surprisingly, a synergistic dielectric enhancement and loss reduction were achieved in CD/PVDF nanocomposite. For one thing, the improvement in εr and high-field Dm originates from the CD-induced polar transition and interface polarization. For another thing, the suppressed dielectric loss and high-field Dr are attributed to the conductive loss depression via the introduction of deep trap levels to capture charges. More importantly, Eb was largely strengthened from 521.9 kV mm−1 to 627.2 kV mm−1 by utilizing the coulomb-blockade effect of CDs to construct energy barriers and impede carrier migration. As a result, compared to the 9.9 J cm−3 for pristine PVDF, the highest discharge energy density of 18.3 J cm−3 was obtained in a 0.5 wt% CD/PVDF nanocomposite, which is competitive with most analogous PVDF-based nanocomposites. This study demonstrates a new paradigm of organic quantum dot-enhanced ferroelectric polymer-based dielectric energy storage performance and will promote its application for electrostatic film capacitors. Full article
(This article belongs to the Special Issue Piezoelectric Polymers and Devices)
Show Figures

Figure 1

Back to TopTop