Polymers for Fuel Cells & Solar Energy
A special issue of Polymers (ISSN 2073-4360).
Deadline for manuscript submissions: closed (30 June 2012) | Viewed by 74803
Special Issue Editor
Special Issue Information
Dear Colleagues,
Worldwide concern over the consequences of traditional energy usage is driving the development of devices for clean energy conversion such as fuel cells and solar cells. Polymer films and membranes play a central functional role in the efficiency and operation of these devices. Polymer electrolyte membranes (PEM) for the conduction of either protons or hydroxide ions, depending on the fuel cell device, have been extensively studied and improved over the last decade. Design of polymeric materials that address a number of issues including high ionic conduction under reduced humidity conditions, fuel crossover, the balance between water uptake / dimensional stability and proton conduction, chemical stability, the catalyst—PEM interface, ionomer, and fuel cell durability are needed. In organic solar cells, polymers have the advantage of much lower cost compared to silicon devices, and can be manufactured in high volume as printed flexible sheets. Polymeric semiconducting materials that address thermal, chemical, photo-stability and phase separation between n-type and p-type polymers are needed to improve durability. With power conversion efficiencies now approaching ~10%, further improvements in low bandgap polymer solar cells through the control of HOMO-LUMO charge separation will close the gap further with the ~25% conversion efficiencies of silicon-based solar cells.
Dr. Michael Guiver
Guest Editor
Keywords
- proton exchange
- anion exchange
- membrane
- fuel cell
- proton conduction
- PEMFC
- solar cell
- photovoltaic
- bandgap
- donor-acceptor
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.