remotesensing-logo

Journal Browser

Journal Browser

Ionosphere Monitoring with Remote Sensing (3rd Edition)

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Atmospheric Remote Sensing".

Deadline for manuscript submissions: 30 March 2025 | Viewed by 4656

Special Issue Editor


E-Mail Website
Guest Editor
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy
Interests: space weather; magnetosphere–ionosphere coupling; ionospheric turbulence; complex systems; solar physics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Understanding the processes occurring in the Earth’s ionosphere is of utmost importance to characterizing several phenomena with relevance to space weather. In fact, the ionospheric plasma promptly reacts to variations in magnetic and electric fields and, thus, is particularly sensitive to different processes on a wide range of spatial and temporal scales. These variations may substantially affect, for instance, the physical properties of the ionosphere, its energetic balance, and the propagation of electromagnetic signals throughout the ionospheric layers.

Thanks to the increased volume of high-quality data, these features can now be reliably investigated due to the joint effort of remote sensing and in situ facilities, such as ionosondes, radars, satellites, and GNSS receivers. This Special Issue aims to encourage advances in our knowledge of the ionosphere through the use of complementary data with different origins and their comparison via models.

This Special Issue is the third edition of ‘Ionosphere Monitoring with Remote Sensing’, and we intend to proceed built upon previous research results. Contributions may address, but are not restricted to, the following topics:

  • The impact of sunlit, solar and geomagnetic activity on the ionosphere at all latitudes;
  • The impact of ionospheric variations on technology;
  • Improvements and new constraints of ionospheric models through new observations, analyses and techniques;
  • Investigating the magnetosphere–ionosphere coupling through different multi-instrumental approaches;
  • New instruments, missions and tools to monitor the ionosphere.

Dr. Fabio Giannattasio
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • space weather
  • magnetosphere–ionosphere coupling
  • ionosphere observations
  • ionospheric models
  • GNSS
  • radio occultation
  • ionosonde
  • radar
  • satellites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

19 pages, 2702 KiB  
Article
Modeling and Forecasting Ionospheric foF2 Variation Based on CNN-BiLSTM-TPA during Low- and High-Solar Activity Years
by Baoyi Xu, Wenqiang Huang, Peng Ren, Yi Li and Zheng Xiang
Remote Sens. 2024, 16(17), 3249; https://doi.org/10.3390/rs16173249 - 2 Sep 2024
Viewed by 862
Abstract
The transmission of high-frequency signals over long distances depends on the ionosphere’s reflective properties, with the selection of operating frequencies being closely tied to variations in the ionosphere. The accurate prediction of ionospheric critical frequency foF2 and other parameters in low latitudes is [...] Read more.
The transmission of high-frequency signals over long distances depends on the ionosphere’s reflective properties, with the selection of operating frequencies being closely tied to variations in the ionosphere. The accurate prediction of ionospheric critical frequency foF2 and other parameters in low latitudes is of great significance for understanding ionospheric changes in high-frequency communications. Currently, deep learning algorithms demonstrate significant advantages in capturing characteristics of the ionosphere. In this paper, a state-of-the-art hybrid neural network is utilized in conjunction with a temporal pattern attention mechanism for predicting variations in the foF2 parameter during high- and low-solar activity years. Convolutional neural networks (CNNs) and bidirectional long short-term memory (BiLSTM), which is capable of extracting spatiotemporal features of ionospheric variations, are incorporated into a hybrid neural network. The foF2 data used for training and testing come from three observatories in Brisbane (27°53′S, 152°92′E), Darwin (12°45′S, 130°95′E) and Townsville (19°63′S, 146°85′E) in 2000, 2008, 2009 and 2014 (the peak or trough years of solar activity in solar cycles 23 and 24), using the advanced Australian Digital Ionospheric Sounder. The results show that the proposed model accurately captures the changes in ionospheric foF2 characteristics and outperforms International Reference Ionosphere 2020 (IRI-2020) and BiLSTM ionospheric prediction models. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

18 pages, 22240 KiB  
Article
Multi-Instrument Observations of the Ionospheric Response Caused by the 8 April 2024 Total Solar Eclipse
by Hui Zhang, Ting Zhang, Xinyu Zhang, Yunbin Yuan, Yifan Wang and Yutang Ma
Remote Sens. 2024, 16(13), 2451; https://doi.org/10.3390/rs16132451 - 3 Jul 2024
Viewed by 1367
Abstract
This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results [...] Read more.
This paper investigates ionospheric response characteristics from multiple perspectives based on globally distributed GNSS data and products, ionosonde data, FORMOSAT-7/COSMIC-2 occultation data, and Swarm satellite observations caused by the total solar eclipse of 8 April 2024 across North and Central America. The results show that both GNSS-derived TEC products have detected the ionospheric TEC degradation triggered by the total solar eclipse, with the maximum degradation exceeding 10 TECU. The TEC data from nine GNSS stations in the path of the maximum eclipse reveal that the intensity of ionospheric TEC degradation is related to the spatial location, with the maximum degradation value of the ionospheric TEC being about 14~23 min behind the moment of the maximum eclipse. Additionally, a negative anomaly of foF2 with a maximum of more than 2.7 MHz is detected by ionosonde. In the eclipse region, NmF2 and hmF2 show trends of decrease and increase, with percentages of variation of 40~70% and 4~16%, respectively. The Ne profile of the Swarm-A satellite is significantly lower than the reference value during the eclipse period, with the maximum negative anomaly value reaching 11.2 × 105 el/cm3, and it failed to show the equatorial ionization anomaly. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

23 pages, 1353 KiB  
Article
Scaling Properties of Magnetic Field Fluctuations in the High-Latitude Ionosphere
by Simone Mestici, Fabio Giannattasio, Paola De Michelis, Francesco Berrilli and Giuseppe Consolini
Remote Sens. 2024, 16(11), 1928; https://doi.org/10.3390/rs16111928 - 27 May 2024
Viewed by 891
Abstract
Space plasma turbulence plays a relevant role in several plasma environments, such as solar wind and the Earth’s magnetosphere–ionosphere system, and is essential for describing their complex coupling. This interaction gives rise to various phenomena, including ionospheric irregularities and the amplification of magnetospheric [...] Read more.
Space plasma turbulence plays a relevant role in several plasma environments, such as solar wind and the Earth’s magnetosphere–ionosphere system, and is essential for describing their complex coupling. This interaction gives rise to various phenomena, including ionospheric irregularities and the amplification of magnetospheric and ionospheric currents. The structure and dynamics of these currents have relevant implications, for example, in studying ionospheric heating and the nature of electric and magnetic field fluctuations in the auroral and polar environments. In this study, we investigate the nature of small-scale fluctuations characterizing the ionospheric magnetic field in response to different geomagnetic conditions. We use high-resolution (50 Hz) magnetic data from the ESA’s Swarm mission, collected during a series of high-latitude crossings, to probe the scaling features of magnetic field fluctuations in auroral and polar cap regions at spatial scales still poorly explored. Our findings reveal that magnetic field fluctuations in field-aligned currents (FACs) and polar cap regions across both hemispheres are characterized by different scaling properties, suggesting a distinct driver of turbulence. Furthermore, we find that geomagnetic activity significantly influences the nature of energy dissipation in FAC regions, leading to more localized filamentary structures toward smaller scales. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

Other

Jump to: Research

16 pages, 6329 KiB  
Technical Note
Dynamic Expansion and Merging of the Equatorial Ionization Anomaly During the 10–11 May 2024 Super Geomagnetic Storm
by Ercha Aa, Yanhong Chen and Bingxian Luo
Remote Sens. 2024, 16(22), 4290; https://doi.org/10.3390/rs16224290 - 18 Nov 2024
Viewed by 399
Abstract
This study investigates the responses of the equatorial and low-latitude ionosphere in the American–Atlantic longitude sector during the super geomagnetic storm that occurred on 10–11 May 2024. The investigation utilizes multi-instrument datasets, including ground-based observations (GNSS TEC, ionosonde, and Fabry–Perot interferometer) as well [...] Read more.
This study investigates the responses of the equatorial and low-latitude ionosphere in the American–Atlantic longitude sector during the super geomagnetic storm that occurred on 10–11 May 2024. The investigation utilizes multi-instrument datasets, including ground-based observations (GNSS TEC, ionosonde, and Fabry–Perot interferometer) as well as space-borne satellite measurements (GOLD, Swarm, DMSP, and TIMED). Our findings reveal significant day-to-day variations in the storm-time equatorial ionization anomaly (EIA), summarized as follows: (1) During the main phase of the storm, the low- and mid-latitude ionosphere experienced a positive storm, with TEC drastically enhanced by 50–100% within a few hours. The EIA crests exhibited a substantial poleward expansion, reaching as high as ±35° MLAT. This expansion was caused by the enhanced fountain effect driven by penetration electric fields, along with increased ambipolar diffusion due to transient meridional wind surges. (2) During the recovery phase of the storm, the global ionosphere was characterized by a substantial negative storm with a 50–80% depletion in TEC. The EIA crests were notably suppressed and merged into a single equatorial band, which can be attributed to the composition change effect and the influence of disturbance dynamo electric fields. These results illustrate the complex processes of magnetosphere–ionosphere–thermosphere coupling during a superstorm, highlighting the significant impacts of space weather on the global ionosphere. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

14 pages, 10016 KiB  
Technical Note
Characterization of Electric Field Fluctuations in the High-Latitude Ionosphere Using a Dynamical Systems Approach: CSES-01 Observations
by Virgilio Quattrociocchi, Paola De Michelis, Tommaso Alberti, Emanuele Papini, Giulia D’Angelo and Giuseppe Consolini
Remote Sens. 2024, 16(21), 3919; https://doi.org/10.3390/rs16213919 - 22 Oct 2024
Viewed by 455
Abstract
We present an analysis of the ionospheric electric field dynamics at high latitudes during periods of quiet and disturbed geomagnetic activity by exploiting recent advancements in dynamical systems and extreme value theory. Specifically, we employed two key indicators: the instantaneous dimension d, [...] Read more.
We present an analysis of the ionospheric electric field dynamics at high latitudes during periods of quiet and disturbed geomagnetic activity by exploiting recent advancements in dynamical systems and extreme value theory. Specifically, we employed two key indicators: the instantaneous dimension d, which evaluates the degrees of freedom within the system, and the extremal index θ, which quantifies the system’s persistence in a given state. Electric field measurements were obtained from the CSES-01 satellite at mid- and high latitudes in the Southern Hemisphere. Our analysis revealed that the instantaneous dimension increases upon crossing specific ionospheric regions corresponding to the auroral oval boundaries. Outside these regions, the instantaneous dimension fluctuates around the state-space dimension, suggesting an ergodic nature of the system. As geomagnetic activity intensifies, differences in the properties of various ionospheric regions persist, albeit with an increased system instability characterized by higher θ values, thus indicating the externally driven nature of the electric field response to geomagnetic activity. This study provides new insights into the spatial and temporal variability of electric field fluctuations in the ionosphere, highlighting the complex interplay between geomagnetic conditions and ionospheric dynamics. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing (3rd Edition))
Show Figures

Figure 1

Back to TopTop