sensors-logo

Journal Browser

Journal Browser

Plasmonic Biosensors

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Biosensors".

Deadline for manuscript submissions: closed (25 February 2023) | Viewed by 15642

Special Issue Editors


E-Mail Website
Guest Editor
Department of Chemical and Biomedical Engineering, University of South Florida Tampa, Tampa, FL 33620, USA
Interests: chemical and biological sensors and systems; plasmonics; catalysis; sensors research involving utilizing acoustic wave devices
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
New Mexico Institute of Mining and Technology 801 Leroy Pl, Socorro, NM 87801, USA
Interests: plasmonic; solar energy conversion; single molecule microscopy; catalysis

Special Issue Information

Dear Colleagues,

Plasmonic materials interact with light to produce collective oscillations of free charges at the boundaries between metal and dielectric, which are often categorized into two classes: propagating surface plasmons (PSP) and localized surface plasmon (LSP) resonance. Since the first demonstration of surface plasmon resonance (SPR) sensors to study processes at the surfaces of metals in the early 1980s, SPR biosensors have made vast technological and commercial advances. Different formats of plasmon resonance are implemented for sensing biomolecules and for studying their interactions and properties. One common mechanism is detecting the change in the SPR response due to the slightest modification of the refractive index of dielectric medium upon bimolecular binding. Localized surface plasmon resonance (LSPR) supported by metallic nanoparticles is another powerful technique for highly sensitive biosensing. Using LSPR to focus the electromagnetic field at nanoscale is extensively applied in numerous surface-enhanced spectroscopic processes, such as surface-enhanced Raman scattering (SERS) and metal enhanced fluorescence (MEF), to detect molecules of biological relevance. The distance dependence of the enhanced electromagnetic field around plasmonic nanoparticles and the LSPR wavelength-shift due to change in medium have been employed for real-time sensitive detection of different biomolecules and their interactions. Reversible conformational changes of unlabeled proteins, sensing of single biomolecules, label-free detection of enzyme-reactant interactions, and nucleic acid detection are a few examples of LSPR-based sensing. Photothermal properties of plasmonic nanoparticles provide another attractive avenue for sensing. Photothermal gold nanoparticles are used to achieve ultrafast real-rime bioassays based on nucleic acid amplification and quantification via polymerase chain reaction (PCR). The ease of integrating LSPR biosensors in miniaturized optical platforms has led to a surge of interest in integrating those in a portable point of care (PoC) diagnostic or spectroscopy platform. Integrability with microfluidic systems, multiplexing, and high-throughput label-free real-time analysis of molecular interaction offer major advantages for developing PoC plasmonic devices. However, there are some major limitations which need to be addressed in future research for effective PoC devices based on LSPR biosensing. Some of those challenges are the absorptive losses inherent in some plasmonic metals, specificity of analyte recognition, and the difficulty in immobilizing the target molecule near the plasmonic nanoparticles. While label-free detection is a key advantage in plasmonic biosensing, additional sensor system level advances are needed to address the influence of nonspecific interactions on the plasmonic signal. Finally, theoretical developments at the classical, semi-classical, and quantum mechanical levels for the above-described plasmonic phenomena will lead to better sensor designs. Utilization of any of the above phenomena towards plasmonic biosensing is of interest to this Special Issue, and such contributions are invited.

Prof. Dr. Venkat R. Bhethanabotla
Prof. Dr. Sanchari Chowdhury
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

13 pages, 3394 KiB  
Article
A Direct Immunoassay Based on Surface-Enhanced Spectroscopy Using AuNP/PS-b-P2VP Nanocomposites
by Moyra F. Vieira, Ana Lívia de Carvalho Bovolato, Bruno G. da Fonseca, Celly M. S. Izumi and Alexandre G. Brolo
Sensors 2023, 23(10), 4810; https://doi.org/10.3390/s23104810 - 16 May 2023
Cited by 3 | Viewed by 1780
Abstract
A biosensor was developed for directly detecting human immunoglobulin G (IgG) and adenosine triphosphate (ATP) based on stable and reproducible gold nanoparticles/polystyrene-b-poly(2-vinylpyridine) (AuNP/PS-b-P2VP) nanocomposites. The substrates were functionalized with carboxylic acid groups for the covalent binding of anti-IgG and anti-ATP and the detection [...] Read more.
A biosensor was developed for directly detecting human immunoglobulin G (IgG) and adenosine triphosphate (ATP) based on stable and reproducible gold nanoparticles/polystyrene-b-poly(2-vinylpyridine) (AuNP/PS-b-P2VP) nanocomposites. The substrates were functionalized with carboxylic acid groups for the covalent binding of anti-IgG and anti-ATP and the detection of IgG and ATP (1 to 150 μg/mL). SEM images of the nanocomposite show 17 ± 2 nm AuNP clusters adsorbed over a continuous porous PS-b-P2VP thin film. UV–VIS and SERS were used to characterize each step of the substrate functionalization and the specific interaction between anti-IgG and the targeted IgG analyte. The UV–VIS results show a redshift of the LSPR band as the AuNP surface was functionalized and SERS measurements showed consistent changes in the spectral features. Principal component analysis (PCA) was used to discriminate between samples before and after the affinity tests. Moreover, the designed biosensor proved to be sensitive to different concentrations of IgG with a limit-of-detection (LOD) down to 1 μg/mL. Moreover, the selectivity to IgG was confirmed using standard solutions of IgM as a control. Finally, ATP direct immunoassay (LOD = 1 μg/mL) has demonstrated that this nanocomposite platform can be used to detect different types of biomolecules after proper functionalization. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

17 pages, 4806 KiB  
Article
The Design of a Glycerol Concentration Sensor Based on an LRSPP Hybrid Photonic Biosensor
by Magno M. de Araújo and José P. da Silva
Sensors 2023, 23(4), 2010; https://doi.org/10.3390/s23042010 - 10 Feb 2023
Cited by 2 | Viewed by 1637
Abstract
A refractive index sensor based on an on-chip silicon nitride (Si3N4) ridge waveguide long-range surface plasmon polariton (LRSPP) is theoretically designed. The waveguide sensor consists of a gold film to enable the plasmonic resonance on top of a Cytop [...] Read more.
A refractive index sensor based on an on-chip silicon nitride (Si3N4) ridge waveguide long-range surface plasmon polariton (LRSPP) is theoretically designed. The waveguide sensor consists of a gold film to enable the plasmonic resonance on top of a Cytop polymer layer. A proper finite element method was used to design and optimize the geometric parameters at the optical wavelength of 633 nm. In addition, the spectral performance was evaluated using the transfer matrix method from 580 to 680 nm. The redshifted interference spectrum results from an increasing analyte refractive index. The sensitivities of 6313 dB/cm/RIU and 251.82 nm/RIU can be obtained with a 400 nm wide and 25 nm thick Au layer. The proposed sensor has the potential for point-of-care applications considering its compactness and simplicity of construction. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

10 pages, 1769 KiB  
Article
High Spectral Sensitivity of Strongly Coupled Hybrid Tamm-Plasmonic Resonances for Biosensing Application
by Justina Anulytė, Ernesta Bužavaitė-Vertelienė, Evaldas Stankevičius, Kernius Vilkevičius and Zigmas Balevičius
Sensors 2022, 22(23), 9453; https://doi.org/10.3390/s22239453 - 3 Dec 2022
Cited by 6 | Viewed by 1782
Abstract
In this study, the sensitivity to the refractive index changes of the ambient was studied on the uniform gold film (~50 nm) with a 1D photonic crystal (PC) from periodic five TiO2 (~110 nm)/SiO2 (~200 nm) bilayers and gold nano-bumps array [...] Read more.
In this study, the sensitivity to the refractive index changes of the ambient was studied on the uniform gold film (~50 nm) with a 1D photonic crystal (PC) from periodic five TiO2 (~110 nm)/SiO2 (~200 nm) bilayers and gold nano-bumps array produced by direct laser writing on the same sample. The optical signal sensitivity of hybrid plasmonic resonances was compared with traditional surface plasmon resonance (SPR) on a single gold layer. The influence of the strong coupling regime between Tamm plasmon polariton (TPP) and propagated plasmon polaritons in the hybrid plasmonic modes on the sensitivity of the optical was discussed. Recent studies have shown very high hybrid plasmonic mode sensitivity SHSPP ≈ 26,000 nm/RIU to the refractive index on the uniform gold layer; meanwhile, the introduction of gold lattice reduces the signal sensitivity, but increases the Q-factor of the plasmonic resonances. Despite this, the sensitivity to the ellipsometric parameters Ψ and Δ on the gold lattice was rather high due to the increased Q-factor of the resonances. The comparison of plasmonic resonance sensitivity to the refractive index changes of hybrid TPP-SPP mode on the uniform gold layer and traditional SPR have shown that hybrid plasmonic mode, due to a strong coupling effect, overcomes the SPR by about 27%. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

11 pages, 686 KiB  
Communication
Fractional Derivative Modification of Drude Model
by Karol Karpiński, Sylwia Zielińska-Raczyńska and David Ziemkiewicz
Sensors 2021, 21(15), 4974; https://doi.org/10.3390/s21154974 - 22 Jul 2021
Cited by 5 | Viewed by 2381
Abstract
A novel, two-parameter modification of a Drude model, based on fractional time derivatives, is presented. The dielectric susceptibility is calculated analytically and simulated numerically, showing good agreement between theoretical description and numerical results. The absorption coefficient and wave vector are shown to follow [...] Read more.
A novel, two-parameter modification of a Drude model, based on fractional time derivatives, is presented. The dielectric susceptibility is calculated analytically and simulated numerically, showing good agreement between theoretical description and numerical results. The absorption coefficient and wave vector are shown to follow a power law in the frequency domain, which is a common phenomenon in electromagnetic and acoustic wave propagation in complex media such as biological tissues. The main novelty of the proposal is the introduction of two separate parameters that provide a more flexible model than most other approaches found in the literature. Moreover, an efficient numerical implementation of the model is presented and its accuracy and stability are examined. Finally, the model is applied to an exemplary soft tissue, confirming its flexibility and usefulness in the context of medical biosensors. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

Review

Jump to: Research, Other

23 pages, 6930 KiB  
Review
Plasmonic Biosensors with Nanostructure for Healthcare Monitoring and Diseases Diagnosis
by Tongge An, Jiahong Wen, Zhichao Dong, Yongjun Zhang, Jian Zhang, Faxiang Qin, Yaxin Wang and Xiaoyu Zhao
Sensors 2023, 23(1), 445; https://doi.org/10.3390/s23010445 - 31 Dec 2022
Cited by 7 | Viewed by 3418
Abstract
Nanophotonics has been widely utilized in enhanced molecularspectroscopy or mediated chemical reaction, which has major applications in the field of enhancing sensing and enables opportunities in developing healthcare monitoring. This review presents an updated overview of the recent exciting advances of plasmonic biosensors [...] Read more.
Nanophotonics has been widely utilized in enhanced molecularspectroscopy or mediated chemical reaction, which has major applications in the field of enhancing sensing and enables opportunities in developing healthcare monitoring. This review presents an updated overview of the recent exciting advances of plasmonic biosensors in the healthcare area. Manufacturing, enhancements and applications of plasmonic biosensors are discussed, with particular focus on nanolisted main preparation methods of various nanostructures, such as chemical synthesis, lithography, nanosphere lithography, nanoimprint lithography, etc., and describing their respective advances and challenges from practical applications of plasmon biosensors. Based on these sensing structures, different types of plasmonic biosensors are summarized regarding detecting cancer biomarkers, body fluid, temperature, gas and COVID-19. Last, the existing challenges and prospects of plasmonic biosensors combined with machine learning, mega data analysis and prediction are surveyed. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

Other

Jump to: Research, Review

11 pages, 4960 KiB  
Letter
Combined SPRi Sensor for Simultaneous Detection of Nitrate and Ammonium in Wastewater
by Martina Vráblová, Ivan Koutník, Kateřina Smutná, Dominika Marková and Nikola Veverková
Sensors 2021, 21(3), 725; https://doi.org/10.3390/s21030725 - 21 Jan 2021
Cited by 7 | Viewed by 3257
Abstract
Water pollution is a serious problem in modern society. Agriculture, being responsible for the discharge of agrochemicals, organic matter, or drug residues, produces a huge amount of wastewater. Aquaponics has the potential to reduce both water consumption and the impact of water pollution [...] Read more.
Water pollution is a serious problem in modern society. Agriculture, being responsible for the discharge of agrochemicals, organic matter, or drug residues, produces a huge amount of wastewater. Aquaponics has the potential to reduce both water consumption and the impact of water pollution on fish farming and plant production. In the aquatic environment, inorganic nitrogen is mostly present in the form of nitrate and ammonium ions. Nitrate, as a final product of ammonia mineralization, is the most common chemical contaminant in aquifers around the world. For continuous monitoring of nitrogen compounds in wastewater, we propose a sensor for the simultaneous detection of nitrate and ammonium. A surface plasmon resonance imaging method with enzyme-mediated detection was used. Active layers of nitrate reductase and glutamine synthetase were created on the gold surface of a biochip and tested for the sensing of nitrate and ammonium in water from an aquaponic system. The proposed sensor was applied in water samples with a concentration of NO3 and NH4+ in a range between 24–780 mg·L−1 and 0.26–120 mg·L−1, respectively, with minimal pretreatment of a sample by its dilution with a buffer prior to contact on a biochip surface. Full article
(This article belongs to the Special Issue Plasmonic Biosensors)
Show Figures

Figure 1

Back to TopTop