Botulinum Neurotoxin as Novel Therapy of Spasticity and Disorder Movement

A special issue of Toxins (ISSN 2072-6651). This special issue belongs to the section "Bacterial Toxins".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 4238

Special Issue Editor


E-Mail Website
Guest Editor
Department of Rehabilitaion Medicine, The Jikei University School of Medicine, Tokyo, Japan
Interests: botulinum toxin therapy for spasticity; rehabilitation for stroke and brain injury; non-invasive brain stimulation; neurorehabilitation; neuromodulation; neuroimaging (SPECT, near-infrared spectros-copy via SPM); cognition

Special Issue Information

Dear Colleagues,

Strong evidence has been established for the use of botulinum neurotoxin therapy for spasticity resulting from conditions such as brain injury and some degenerative diseases. Additionally, it has been suggested that incorporating rehabilitation and adjunctive therapies can not only improve spasticity but also enhance overall functionality. In this Special Issue, we provide readers with various rehabilitation approaches, adjunctive therapies, and treatment strategies related to botulinum toxin therapy.

Dr. Takatoshi Hara
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a double-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Toxins is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • botulinum neurotoxin
  • spasticity
  • disorder movement
  • neuromodulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 698 KiB  
Communication
Role of Diagnostic Nerve Blocks in the Goal-Oriented Treatment of Spasticity with Botulinum Toxin Type A: A Case–Control Study
by Mirko Filippetti, Stefano Tamburin, Rita Di Censo, Martina Adamo, Elisa Manera, Jessica Ingrà, Elisa Mantovani, Salvatore Facciorusso, Marco Battaglia, Alessio Baricich, Andrea Santamato, Nicola Smania and Alessandro Picelli
Toxins 2024, 16(6), 258; https://doi.org/10.3390/toxins16060258 - 3 Jun 2024
Cited by 1 | Viewed by 1605
Abstract
The goal-setting process is pivotal in managing patients with disabling spasticity. This case–control study assessed the role of diagnostic nerve blocks in guiding the goal-setting process within goal-targeted treatment of spasticity with botulinum neurotoxin-A. In this case–control study, patients with disabling spasticity underwent [...] Read more.
The goal-setting process is pivotal in managing patients with disabling spasticity. This case–control study assessed the role of diagnostic nerve blocks in guiding the goal-setting process within goal-targeted treatment of spasticity with botulinum neurotoxin-A. In this case–control study, patients with disabling spasticity underwent either a goal-setting process based on the patient’s needs and clinical evaluation (control group) or additional diagnostic nerve block procedures (case group). All enrolled patients underwent a focal treatment with botulinum neurotoxin-A injection and a 1-month follow-up evaluation during which goal achievement was quantified using the goal attainment scaling-light score system. Data showed a higher goal achievement rate in the case group (70%) than in the control group (40%). In conclusion, diagnostic nerve blocks may help guide the goal-setting process within goal-targeted treatment of spasticity with botulinum neurotoxin-A towards more realistic and achievable goals, thereby improving the outcomes of botulinum neurotoxin-A injection. Future studies should better explore the role of diagnostic nerve blocks to further personalize botulinum neurotoxin-A according to individual patients’ preferences and requirements. Full article
Show Figures

Figure 1

13 pages, 1495 KiB  
Article
Concomitant Botulinum Toxin Injections for Neurogenic Detrusor Overactivity and Spasticity—A Retrospective Analysis of Practice and Safety
by Arnaud Leilaz, Charles Joussain, Pierre Denys, Djamel Bensmail and Jonathan Levy
Toxins 2024, 16(6), 252; https://doi.org/10.3390/toxins16060252 - 28 May 2024
Viewed by 1074
Abstract
As multiple indications for botulinum toxin injections (BTIs) can coexist for neurological patients, there are to date no description of concomitant injections (CIs) to treat both spasticity and neurogenic detrusor overactivity incontinence (NDOI) in patients with spinal cord injuries (SCIs) and multiple sclerosis [...] Read more.
As multiple indications for botulinum toxin injections (BTIs) can coexist for neurological patients, there are to date no description of concomitant injections (CIs) to treat both spasticity and neurogenic detrusor overactivity incontinence (NDOI) in patients with spinal cord injuries (SCIs) and multiple sclerosis (MS). We therefore identified patients followed at our institution by health data hub digging, using a specific procedure coding system in use in France, who have been treated at least once with detrusor and skeletal muscle BTIs within the same 1-month period, over the past 5 years (2017–2021). We analyzed 72 patients representing 319 CIs. Fifty (69%) were male, and the patients were mostly SCI (76%) and MS (18%) patients and were treated by a mean number of CIs of 4.4 ± 3.6 [1–14]. The mean cumulative dose was 442.1 ± 98.8 U, and 95% of CIs were performed within a 72 h timeframe. Among all CIs, five patients had symptoms evocative of distant spread but only one had a confirmed pathological jitter in single-fiber EMG. Eleven discontinued CIs for surgical alternatives: enterocystoplasty (five), tenotomy (three), intrathecal baclofen (two) and neurotomy (one). Concomitant BTIs for treating both spasticity and NDOI at the same time appeared safe when performed within a short delay and in compliance with actual knowledge for maximum doses. Full article
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1077 KiB  
Review
Gait Reconstruction Strategy Using Botulinum Toxin Therapy Combined with Rehabilitation
by Takatoshi Hara, Toru Takekawa and Masahiro Abo
Toxins 2024, 16(7), 323; https://doi.org/10.3390/toxins16070323 - 19 Jul 2024
Viewed by 1033
Abstract
Numerous studies have established a robust body of evidence for botulinum toxin A (BoNT-A) therapy as a treatment for upper motor neuron syndrome. These studies demonstrated improvements in spasticity, range of joint motion, and pain reduction. However, there are few studies that have [...] Read more.
Numerous studies have established a robust body of evidence for botulinum toxin A (BoNT-A) therapy as a treatment for upper motor neuron syndrome. These studies demonstrated improvements in spasticity, range of joint motion, and pain reduction. However, there are few studies that have focused on improvement of paralysis or functional enhancement as the primary outcome. This paper discusses the multifaceted aspects of spasticity assessment, administration, and rehabilitation with the goal of optimising the effects of BoNT-A on lower-limb spasticity and achieving functional improvement and gait reconstruction. This paper extracts studies on BoNT-A and rehabilitation for the lower limbs and provides new knowledge obtained from them. From these discussion,, key points in a walking reconstruction strategy through the combined use of BoNT-A and rehabilitation include: (1) injection techniques based on the identification of appropriate muscles through proper evaluation; (2) combined with rehabilitation; (3) effective spasticity control; (4) improvement in ankle joint range of motion; (5) promotion of a forward gait pattern; (6) adjustment of orthotics; and (7) maintenance of the effects through frequent BoNT-A administration. Based on these key points, the degree of muscle fibrosis and preintervention walking speed may serve as indicators for treatment strategies. With the accumulation of recent studies, a study focusing on walking functions is needed. As a result, it is suggested that BoNT-A treatment for lower limb spasticity should be established not just as a treatment for spasticity but also as a therapeutic strategy in the field of neurorehabilitation aimed at improving walking function. Full article
Show Figures

Figure 1

Back to TopTop