Virus-Like Particle Vaccine Development

A special issue of Vaccines (ISSN 2076-393X). This special issue belongs to the section "Attenuated/Inactivated/Live and Vectored Vaccines".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 5136

Special Issue Editor

Biology and Information Science Laboratory, East China Normal University, Shanghai 200050, China
Interests: protein production; virology; vaccine; virus-like particle; liposome; experimental evolution
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Viruses are now recognized as important resources for studying diseases and producing recombinant proteins. Virus-like particles (VLPs), which imitate viruses but do not possess genetic material, are a safe and powerful tool for vaccine development. There has already been some licensed VLP vaccines available in the commercial market against various infectious pathogens. While VLP subunit vaccines have succeeded, there are still challenges to overcome before the VLP surface display system can be widely employed as an effective vaccine strategy for many infectious diseases.

This Special Issue highlights how the leading researchers design, produce, and approve their VLP vaccines using diverse protein expression systems. We also share various perspectives and discuss the future of the VLP-based vaccine strategy.

Dr. Jian Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vaccines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vaccine
  • virus-like particle
  • display
  • protein production
  • immunogenicity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 3965 KiB  
Article
Preclinical Development of a Novel Zika Virus-like Particle Vaccine in Combination with Tetravalent Dengue Virus-like Particle Vaccines
by Dominik A. Rothen, Sudip Kumar Dutta, Pascal S. Krenger, Alessandro Pardini, Anne-Cathrine S. Vogt, Romano Josi, Ilva Lieknina, Albert D. M. E. Osterhaus, Mona O. Mohsen, Monique Vogel, Byron Martina, Kaspars Tars and Martin F. Bachmann
Vaccines 2024, 12(9), 1053; https://doi.org/10.3390/vaccines12091053 - 14 Sep 2024
Viewed by 1385
Abstract
Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions [...] Read more.
Declared as a Public Health Emergency in 2016 by the World Health Organization (WHO), the Zika virus (ZIKV) continues to cause outbreaks that are linked to increased neurological complications. Transmitted mainly by Aedes mosquitoes, the virus is spread mostly amongst several tropical regions with the potential of territorial expansion due to environmental and ecological changes. The ZIKV envelope protein’s domain III, crucial for vaccine development due to its role in receptor binding and neutralizing antibody targeting, was integrated into sterically optimized AP205 VLPs to create an EDIII-based VLP vaccine. To increase the potential size of domains that can be accommodated by AP205, two AP205 monomers were fused into a dimer, resulting in 90 rather than 180 N-/C- termini amenable for fusion. EDIII displayed on AP205 VLPs has several immunological advantages, like a repetitive surface, a size of 20–200 nm (another PASP), and packaged bacterial RNA as adjuvants (a natural toll-like receptor 7/8 ligand). In this study, we evaluated a novel vaccine candidate for safety and immunogenicity in mice, demonstrating its ability to induce high-affinity, ZIKV-neutralizing antibodies without significant disease-enhancing properties. Due to the close genetical and structural characteristics, the same mosquito vectors, and the same ecological niche of the dengue virus and Zika virus, a vaccine covering all four Dengue viruses (DENV) serotypes as well as ZIKV would be of significant interest. We co-formulated the ZIKV vaccine with recently developed DENV vaccines based on the same AP205 VLP platform and tested the vaccine mix in a murine model. This combinatory vaccine effectively induced a strong humoral immune response and neutralized all five targeted viruses after two doses, with no significant antibody-dependent enhancement (ADE) observed. Overall, these findings highlight the potential of the AP205 VLP-based combinatory vaccine as a promising approach for providing broad protection against DENV and ZIKV infections. Further investigations and preclinical studies are required to advance this vaccine candidate toward potential use in human populations. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

24 pages, 6314 KiB  
Article
Preclinical Evaluation of Novel Sterically Optimized VLP-Based Vaccines against All Four DENV Serotypes
by Dominik A. Rothen, Sudip Kumar Dutta, Pascal S. Krenger, Anne-Cathrine S. Vogt, Ilva Lieknina, Jan M. Sobczak, Albert D. M. E. Osterhaus, Mona O. Mohsen, Monique Vogel, Byron Martina, Kaspars Tars and Martin F. Bachmann
Vaccines 2024, 12(8), 874; https://doi.org/10.3390/vaccines12080874 - 1 Aug 2024
Cited by 2 | Viewed by 1668 | Correction
Abstract
Over the past few decades, dengue fever has emerged as a significant global health threat, affecting tropical and moderate climate regions. Current vaccines have practical limitations, there is a strong need for safer, more effective options. This study introduces novel vaccine candidates covering [...] Read more.
Over the past few decades, dengue fever has emerged as a significant global health threat, affecting tropical and moderate climate regions. Current vaccines have practical limitations, there is a strong need for safer, more effective options. This study introduces novel vaccine candidates covering all four dengue virus (DENV) serotypes using virus-like particles (VLPs), a proven vaccine platform. The dengue virus envelope protein domain III (EDIII), the primary target of DENV-neutralizing antibodies, was either genetically fused or chemically coupled to bacteriophage-derived AP205-VLPs. To facilitate the incorporation of the large EDIII domain, AP205 monomers were dimerized, resulting in sterically optimized VLPs with 90 N- and C-termini. These vaccines induced high-affinity/avidity antibody titers in mice, and confirmed their protective potential by neutralizing different DENV serotypes in vitro. Administration of a tetravalent vaccine induced high neutralizing titers against all four serotypes without producing enhancing antibodies, at least not against DENV2. In conclusion, the vaccine candidates, especially when administered in a combined fashion, exhibit intriguing properties for potential use in the field, and exploring the possibility of conducting a preclinical challenge model to verify protection would be a logical next step. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

18 pages, 11542 KiB  
Article
Gold Nanoparticle Virus-like Particles Presenting SARS-CoV-2 Spike Protein: Synthesis, Biophysical Properties and Immunogenicity in BALB/c Mice
by Vivian A. Salazar, Joan Comenge, Rosa Suárez-López, Judith A. Burger, Rogier W. Sanders, Neus G. Bastús, Carlos Jaime, Joan Joseph-Munne and Victor Puntes
Vaccines 2024, 12(8), 829; https://doi.org/10.3390/vaccines12080829 - 23 Jul 2024
Viewed by 1522
Abstract
Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold [...] Read more.
Gold nanoparticles (AuNPs) decorated with antigens have recently emerged as promising tools for vaccine development due to their innate ability to provide stability to antigens and modulate immune responses. In this study, we have engineered deactivated virus-like particles (VLPs) by precisely functionalizing gold cores with coronas comprising the full SARS-CoV-2 spike protein (S). Using BALB/c mice as a model, we investigated the immunogenicity of these S-AuNPs-VLPs. Our results demonstrate that S-AuNPs-VLPs consistently enhanced antigen-specific antibody responses compared to the S protein free in solution. This enhancement included higher binding antibody titers, higher neutralizing capacity of antibodies, and stronger T-cell responses. Compared to the mRNA COVID-19 vaccine, where the S protein is synthesized in situ, S-AuNPs-VLPs induced comparable binding and neutralizing antibody responses, but substantially superior T-cell responses. In conclusion, our study highlights the potential of conjugated AuNPs as an effective antigen-delivery system for protein-based vaccines targeting a broad spectrum of infectious diseases and other emergent viruses. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

Back to TopTop