Urban Stormwater Harvesting, and Wastewater Treatment and Reuse

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Urban Water Management".

Deadline for manuscript submissions: 20 May 2025 | Viewed by 7697

Special Issue Editor


E-Mail Website
Guest Editor
Sustainability Engineering, School of Engineering, Western Sydney University, Penrith, Australia
Interests: water efficiency in agriculture; wastewater resue in irrigation; organic fertilisers; hydroponics; fogponics and aquaponics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The world population is expected to reach about 10 billion by 2050, 70% of which is expected to live in urban areas. This further exacerbates already dire water availability issues in urban areas. In this context, the treatment and recycling of wastewater and stormwater treatment and harvesting play a critical role in providing water security to urban areas. In Australia, only about 15% of wastewater is recycled. Similar levels of recycling are currently being practiced around the world. To achieve the Sustainable Development Goals set out by the UN, particularly with respect to UN SDG 1, 2, 3, 6, 11, 12 and 13, these recycling rates need to be significantly increased. In light of this need for increased recycling of water and stormwater harvesting, this Special Issue is seeking submissions from leading researchers around the world who are working on innovative solutions for increasing the recycling of wastewater and stormwater harvesting. In this Special Issue, a special emphasis will be placed on urban water balance studies.

Dr. Dharma Hagare
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stormwater
  • wastewater
  • harvesting
  • treatment
  • reuse
  • nutrients
  • circular economy
  • recycle
  • economics
  • policy
  • urban
  • water balance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 10094 KiB  
Article
Geospatial Assessment of Stormwater Harvesting Potential in Uganda’s Cattle Corridor
by Geoffrey Ssekyanzi, Mirza Junaid Ahmad and Kyung-Sook Choi
Water 2025, 17(3), 349; https://doi.org/10.3390/w17030349 - 26 Jan 2025
Viewed by 310
Abstract
Freshwater scarcity remains a pressing global issue, exacerbated by inefficiencies in stormwater management during rainy seasons. Strategic stormwater harvesting offers a sustainable solution through runoff utilization for irrigation and livestock support. However, challenges such as limited farmer knowledge, difficult terrain, financial constraints, unpredictable [...] Read more.
Freshwater scarcity remains a pressing global issue, exacerbated by inefficiencies in stormwater management during rainy seasons. Strategic stormwater harvesting offers a sustainable solution through runoff utilization for irrigation and livestock support. However, challenges such as limited farmer knowledge, difficult terrain, financial constraints, unpredictable weather, and scarce meteorological data hinder the accuracy of optimum stormwater harvesting sites. This study employs a GIS-based SCS-CN hydrological approach to address these issues, identifying suitable stormwater harvesting locations, estimating runoff volumes, and recommending site-specific storage structures. Using spatial datasets of daily rainfall (20 years), land use/land cover (LULC), digital elevation models (DEM), and soil data, the study evaluated 80 watersheds in Uganda’s cattle corridor. Annual runoff estimates within watersheds ranged from 62 million to 557 million m3, with 56 watersheds (70%) identified for multiple interventions such as farm ponds, check dams, and gully plugs. These structures are designed to enhance stormwater harvesting and utilization, improving water availability for livestock and crop production in a region characterized by water scarcity and erratic rainfall. The findings provide practical solutions for sustainable water management in drought-prone areas with limited meteorological data. This approach can be scaled to similar regions to enhance resilience in water-scarce landscapes. By offering actionable insights, this research supports farmers and water authorities in effectively allocating stormwater resources and implementing tailored harvesting strategies to bolster agriculture and livestock production in Uganda’s cattle corridor. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
17 pages, 3974 KiB  
Article
Applying Low-Impact Development Techniques for Improved Water Management in Urban Areas
by Jaemoon Kim, Jaerock Park, Sungmin Cha and Soonchul Kwon
Water 2024, 16(19), 2837; https://doi.org/10.3390/w16192837 - 6 Oct 2024
Cited by 1 | Viewed by 1072
Abstract
Worldwide, the increase in impervious surfaces due to urbanization has led to significant water cycle issues such as groundwater depletion, urban heat islands, and flooding. To address these challenges, Low-Impact Development (LID) techniques are increasingly being applied in stormwater management. This study focuses [...] Read more.
Worldwide, the increase in impervious surfaces due to urbanization has led to significant water cycle issues such as groundwater depletion, urban heat islands, and flooding. To address these challenges, Low-Impact Development (LID) techniques are increasingly being applied in stormwater management. This study focuses on Ulsan, designated as a water cycle model city in South Korea, with a particular emphasis on the highly urbanized Okgyo drainage watershed. Using the Stormwater Management Model (SWMM) version 5.1, long-term runoff simulations were conducted to evaluate the effects of LID implementation on water cycle change rates and recovery rates. The model incorporates detailed hydrological and hydraulic parameters, including inflow, runoff, infiltration, and evapotranspiration for six subcatchments within the watershed. The SWMM was calibrated and validated using 30 years of historical rainfall data (1987–2016) from the Ulsan weather station. Calibration and validation processes used the NRCS-CN (Curve Number) method to ensure accuracy in simulating runoff patterns and water balance. The study specifically evaluated the effectiveness of two LID techniques: bioretention and permeable pavements. Three scenarios were modeled: bioretention applied to 5% of the area, permeable pavements applied to 5% of the area, and a combined application of both techniques. The results showed that the combined scenario provided the best outcome, with a 7.80% reduction in surface runoff and a 14.56% improvement in water cycle health. The LID application scenario confirmed the potential to achieve the water cycle management target of handling 25.5 mm of rainfall. These findings demonstrate that the introduction of LID techniques in public spaces can significantly enhance water management. This research provides insights into effective water cycle management methods tailored to specific urban land uses, laying a foundation for future urban planning and sustainable development. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

13 pages, 3229 KiB  
Article
Characterization of Silica Sand-Based Pervious Bricks and Their Performance under Stormwater Treatment
by Meijuan Chen, Weiying Li, Zhiqiang Dong and Dawei Zhang
Water 2024, 16(18), 2625; https://doi.org/10.3390/w16182625 - 16 Sep 2024
Viewed by 1202
Abstract
The acceleration of urbanization has disrupted natural water cycles, resulting in increased impervious urban surfaces and non-point source pollution from stormwater runoff. Addressing urban stormwater recharge has become crucial. This study introduces a novel silica sand-based permeable filtration material, investigating its surface characteristics, [...] Read more.
The acceleration of urbanization has disrupted natural water cycles, resulting in increased impervious urban surfaces and non-point source pollution from stormwater runoff. Addressing urban stormwater recharge has become crucial. This study introduces a novel silica sand-based permeable filtration material, investigating its surface characteristics, pore structure, permeability, and pollutant interception capabilities. The results demonstrate that hydrophilic binder coating modification of the permeable surface sand aggregate, combined with hydrophilic inorganic additives, having a porous structure with an average pore size of less than 50 μm and a porosity between 15% and 35%, significantly enhances surface hydrophilicity, achieving a permeation rate of up to 6.8 mL/(min·cm²). Moreover, it shows exceptional filtration and anti-clogging properties, achieving over 98% suspended solids interception and strong resistance to fouling. Dynamic biofilm formation experiments using simulated rain and domestic wastewater explore biofilm morphology and function on silica sand filtration well surfaces. Mature biofilms sustain COD removal efficiency exceeding 70%, with levels consistently below 50 mg/L, NH4+ decreasing to 2 mg N/L, and total nitrogen maintained below 10 mg N/L. The system features anoxic, anoxic, and aerobic zones, fostering synergistic organic matter and nitrogen removal by diverse microorganisms, enhancing pollutant mitigation. Silica sand-based permeable filtration material effectively mitigates urban stormwater runoff pollutants—suspended solids, organic matter, and nitrogen—offering an innovative solution for sponge city development and rainwater resource management. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

29 pages, 7298 KiB  
Article
Behaviour and Peculiarities of Oil Hydrocarbon Removal from Rain Garden Structures
by Maryna Kravchenko, Yuliia Trach, Roman Trach, Tetiana Tkachenko and Viktor Mileikovskyi
Water 2024, 16(13), 1802; https://doi.org/10.3390/w16131802 - 26 Jun 2024
Cited by 2 | Viewed by 1558
Abstract
The expansion of impervious areas in the context of climate change leads to an increase in stormwater runoff. Runoff from roads, petrol stations, and service stations is the most common form of unintentional release of petroleum hydrocarbons (PHs). Rain gardens are an important [...] Read more.
The expansion of impervious areas in the context of climate change leads to an increase in stormwater runoff. Runoff from roads, petrol stations, and service stations is the most common form of unintentional release of petroleum hydrocarbons (PHs). Rain gardens are an important practice for removing PHs from stormwater runoff, but little data exist on the removal efficiency and behaviour of these substances within the system. The main objective of the study is to investigate the effectiveness of rain gardens in removing pollutants such as diesel fuel (DF) and used engine oil (UEO) in a laboratory setting, as well as to study the behaviours of these pollutants within the system. Eight experimental columns (7.164 dm3) were packed with soil (bulk density 1.48 kg/dm3), river sand (1.6 kg/dm3), and gravel. Plants of the Physocarpus opulifolia Diabolo species were planted in the topsoil to study their resistance to PHs. For 6 months, the columns were watered with model PHs followed by simulated rain events. The concentrations of PHs in the leachate and soil media of the columns were determined by reverse-phase high-performance liquid chromatography (RP-HPLC). The results of HPLC indicated the absence of UEO and DF components in the leachates of all experimental columns, which suggested 100% removal of these substances from stormwater. The chromatography results showed that 95% of the modelled PHs were retained in the surface layer of the soil medium due to the sorption process, which led to a change in hydraulic conductivity over time. Recommendations are proposed to increase the service life of rain gardens designed to filter PHs from stormwater. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 8777 KiB  
Article
Economic Feasibility of Rainwater Harvesting and Greywater Reuse in a Multifamily Building
by Enedir Ghisi and Douglas Ancelmo Freitas
Water 2024, 16(11), 1580; https://doi.org/10.3390/w16111580 - 31 May 2024
Viewed by 1164
Abstract
This study aimed to evaluate the financial feasibility of rainwater harvesting and greywater reuse in a multifamily building located in Florianópolis, Brazil. A building, consisting of two blocks with 60 flats each, was chosen to obtain data about the number of residents, building [...] Read more.
This study aimed to evaluate the financial feasibility of rainwater harvesting and greywater reuse in a multifamily building located in Florianópolis, Brazil. A building, consisting of two blocks with 60 flats each, was chosen to obtain data about the number of residents, building characteristics, potable water consumption, and rainwater and greywater demands (obtained by means of questionnaires and water measurements). The financial feasibility analyses considered rainwater and greywater systems separately and together. The impact on the urban stormwater drainage system was evaluated through the reduction of stormwater runoff. The energy consumption in the operational phase of each system was estimated through the amount of energy consumed by the motor pumps to supply one cubic meter of water. The potential for potable water savings through the use of rainwater—that supplies water for washing machines—was approximately 6.9%. The potential for potable water savings through the use of greywater—that supplies water to toilets—was approximately 5.7%. Both systems were feasible. The payback period for rainwater harvesting systems ranged from 57 to 76 months. For greywater systems, the payback period ranged from 127 to 159 months. When considering both systems working together, the payback period ranged from 89 to 132 months. The rainwater harvesting system can reduce 11.8% the stormwater volume destined to the urban stormwater drainage system in relation to the current contribution volume. Energy consumption was approximately 0.56 kWh/m3 of treated water for the rainwater harvesting system and 0.89 kWh/m3 of treated water for the greywater system. Rainwater and greywater were considered economically feasible, especially for higher inflation scenarios. Furthermore, such systems are interesting alternatives in terms of impacts considering urban drainage and energy consumption. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 10305 KiB  
Article
Storage Scale Assessment of a Low-Impact Development System in a Sponge City
by Mingkun Xie, Dongxu He, Zengchuan Dong and Yuning Cheng
Water 2024, 16(10), 1427; https://doi.org/10.3390/w16101427 - 17 May 2024
Cited by 2 | Viewed by 1475
Abstract
A sponge city is an established urban stormwater management approach that effectively reduces urban runoff and pollutant discharges. In order to plan and design, estimate costs, and evaluate the performance of urban sponge city systems, it is essential to calculate the storage scale. [...] Read more.
A sponge city is an established urban stormwater management approach that effectively reduces urban runoff and pollutant discharges. In order to plan and design, estimate costs, and evaluate the performance of urban sponge city systems, it is essential to calculate the storage scale. In this context, a sponge city storage scale and calculation method based on a multifactor spatial overlay was designed, utilising the starting area of the Dafeng Hi-tech Development Zone in Yancheng City, China, as an illustrative example. The indicators for assessing the impact of sponge city systems on river plain networks are constructed based on four aspects: land planning, building density, water surface rate and green space rate. The relative importance of each indicator was determined based on the necessity of controlling runoff from land parcels and the appropriateness of facility construction. The annual runoff control rate of the 39 low-impact development control units in the study area was calculated using ArcGIS through multifactor spatial overlay mapping and weighting. The results showed that (1) the Geographic Information System (GIS)overlay technology can effectively assist in the decomposition of LID scales; (2) data can be derived, including the design storage volume and other basic control scale indicators for each unit. The study results are expected to serve as a reference for the preparation of special low-impact development plans in the river plain network area of China and the promotion of the construction of a sustainable blue–green system in the city. Full article
(This article belongs to the Special Issue Urban Stormwater Harvesting, and Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop