Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Entropy Theory
2.2. Pressure Driven Analysis
- DDA: Assuming that demand quantity is known at each point and can always be supplied, continuity and recurrence equations are used to calculate pressure heads at each point. Usage and leakage are input as demand.
- PDA: A numerical analysis that considers the available water supply for each demand point and the leakage of a pipe as pressure-dependent factors. In other words, the variables are determined by a pipe network analysis. Both the head-available water supply and the head-leakage are calculated as unknown values.
2.3. Pressure Driven Entropy Method (PDEM)
2.3.1. Assumption of a Single Pipe Failure and Scenario Setting
2.3.2. Hydraulic Analysis for Pipe Failure and Derivation of Water Pressures at Each Node (DDA and PDA)
- = -th simulation scenario
- = Number of simulation scenarios
- = -th node
- = Number of nodes in a pipe network
- = Pressure at the -th node for the -th simulation scenario.
2.3.3. Calculation of Nodal Entropy and Determination of Pressure Measurement Priority Order
3. Results and Discussion
3.1. Benchmark Pipe Networks (Ozger’s and Anytown Networks)
3.2. Real Pipe Network (Cherry Hills Network)
- = SII of Subsystem k
- = Total water Demand under normal conditions
- = Total Effective Supply when Subsystem k Isolated
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Node ID | Demand | Head | Pressure |
---|---|---|---|
CMH | m | m | |
J1 | 0 | 59.71 | 32.28 |
J2 | 212.4 | 59.2 | 25.67 |
J3 | 212.4 | 56.08 | 27.12 |
J4 | 640.8 | 54.99 | 22.99 |
J5 | 212.4 | 55.08 | 24.6 |
J6 | 684 | 49.85 | 18.46 |
J7 | 640.8 | 49.95 | 20.39 |
J8 | 327.6 | 48.95 | 17.56 |
J9 | 0 | 52.23 | 19.62 |
J10 | 0 | 53.54 | 19.4 |
J11 | 108 | 48.98 | 13.93 |
J12 | 108 | 48.75 | 12.17 |
J13 | 0 | 52.14 | 18.61 |
ID | S.1 | S.2 | S.3 | S.4 | S.5 | S.6 | S.7 | S.8 | S.9 | S.10 | S.11 | S.12 | S.13 | S.14 | S.15 | S.16 | S.17 | S.18 | S.19 | S.20 | S.21 | Ave. | ST.D |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J1 | 7.82 | 33.53 | 33.07 | 32.80 | 32.25 | 31.42 | 32.28 | 32.30 | 32.54 | 32.30 | 32.24 | 32.24 | 32.28 | 32.30 | 32.45 | 32.33 | 32.35 | 32.29 | 32.33 | 32.30 | 32.29 | 31.22 | 5.38 |
J2 | 1.72 | 1.72 | 26.78 | 26.40 | 25.62 | 24.45 | 25.66 | 25.69 | 26.03 | 25.69 | 25.60 | 25.60 | 25.66 | 25.69 | 25.90 | 25.74 | 25.76 | 25.68 | 25.74 | 25.70 | 25.68 | 23.45 | 7.24 |
J3 | 6.41 | 6.41 | 12.39 | 30.33 | 26.84 | 22.43 | 27.31 | 27.52 | 26.13 | 27.10 | 27.16 | 27.22 | 27.13 | 27.15 | 26.98 | 26.96 | 27.21 | 27.13 | 27.21 | 26.99 | 27.30 | 24.35 | 6.88 |
J4 | 3.71 | 3.71 | 9.39 | 12.19 | 22.58 | 16.37 | 23.37 | 23.06 | 21.58 | 22.93 | 23.19 | 23.28 | 23.04 | 23.01 | 22.71 | 22.75 | 23.08 | 23.01 | 23.10 | 22.81 | 23.31 | 19.63 | 6.54 |
J5 | 12.42 | 12.42 | 16.34 | 18.33 | 25.12 | 14.05 | 24.78 | 24.57 | 23.10 | 24.52 | 25.43 | 25.48 | 24.76 | 24.58 | 24.24 | 24.31 | 24.68 | 24.62 | 24.71 | 24.38 | 25.11 | 22.28 | 4.51 |
J6 | 4.34 | 4.34 | 10.00 | 12.80 | 18.58 | 11.61 | 15.94 | 16.77 | 13.41 | 17.92 | 14.48 | 15.75 | 17.38 | 18.76 | 17.47 | 17.74 | 18.59 | 18.48 | 18.65 | 17.94 | 18.30 | 15.20 | 4.40 |
J7 | 5.09 | 5.09 | 12.63 | 17.40 | 20.48 | 14.92 | 18.86 | 18.24 | 12.69 | 20.92 | 18.13 | 18.13 | 19.87 | 21.03 | 19.32 | 19.61 | 20.53 | 20.42 | 20.60 | 19.82 | 19.93 | 17.32 | 4.74 |
J8 | 3.74 | 3.74 | 10.76 | 13.96 | 17.77 | 11.53 | 16.46 | 16.07 | 11.68 | 17.82 | 15.96 | 13.69 | 17.78 | 15.04 | 13.73 | 15.07 | 17.82 | 17.62 | 18.02 | 15.86 | 12.41 | 14.12 | 4.13 |
J9 | 2.59 | 2.59 | 18.75 | 19.32 | 19.95 | 17.59 | 19.58 | 19.49 | 18.53 | 20.00 | 19.40 | 18.79 | 19.97 | 19.20 | 6.82 | 13.15 | 20.71 | 19.88 | 21.94 | 22.68 | 18.51 | 17.12 | 5.83 |
J10 | 1.07 | 1.07 | 19.15 | 19.44 | 19.67 | 17.70 | 19.43 | 19.36 | 18.79 | 19.73 | 19.28 | 18.86 | 19.70 | 19.17 | 5.16 | 23.19 | 21.50 | 19.71 | 20.80 | 21.68 | 18.68 | 17.29 | 6.37 |
J11 | 0.13 | 0.13 | 13.88 | 14.20 | 14.51 | 12.81 | 14.27 | 14.21 | 13.64 | 14.55 | 14.15 | 13.75 | 14.53 | 14.03 | 3.46 | 14.45 | 5.10 | 14.99 | 12.06 | 16.54 | 13.57 | 11.85 | 4.96 |
J12 | 0.00 | 0.00 | 12.07 | 12.46 | 12.85 | 11.07 | 12.59 | 12.52 | 11.86 | 12.89 | 12.46 | 12.02 | 12.87 | 12.32 | 2.00 | 8.80 | 9.18 | 12.36 | 5.02 | 14.93 | 11.82 | 10.10 | 4.43 |
J13 | 5.51 | 5.51 | 10.72 | 13.25 | 18.95 | 10.19 | 17.80 | 17.78 | 15.06 | 18.51 | 17.65 | 12.39 | 20.14 | 18.08 | 17.23 | 17.66 | 18.76 | 18.64 | 18.83 | 17.94 | 20.91 | 15.79 | 4.49 |
ID | S.1 | S.2 | S.3 | S.4 | S.5 | S.6 | S.7 | S.8 | S.9 | S.10 | S.11 | S.12 | S.13 | S.14 | S.15 | S.16 | S.17 | S.18 | S.19 | S.20 | S.21 | Ave. | ST.D |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wo/Zero Data | |||||||||||||||||||||||
J1 | 24.47 | 1.25 | 0.79 | 0.52 | 0.03 | 0.86 | 0.00 | 0.02 | 0.26 | 0.02 | 0.05 | 0.04 | 0.00 | 0.02 | 0.17 | 0.05 | 0.06 | 0.01 | 0.05 | 0.02 | 0.01 | 1.37 | 5.30 |
J2 | 23.96 | 23.96 | 1.11 | 0.73 | 0.05 | 1.22 | 0.01 | 0.02 | 0.36 | 0.02 | 0.07 | 0.07 | 0.01 | 0.02 | 0.23 | 0.07 | 0.09 | 0.01 | 0.07 | 0.02 | 0.00 | 2.48 | 7.15 |
J3 | 20.71 | 20.71 | 14.73 | 3.21 | 0.28 | 4.69 | 0.19 | 0.40 | 0.99 | 0.02 | 0.04 | 0.10 | 0.01 | 0.03 | 0.14 | 0.16 | 0.08 | 0.01 | 0.09 | 0.13 | 0.18 | 3.19 | 6.69 |
J4 | 19.29 | 19.29 | 13.60 | 10.80 | 0.41 | 6.62 | 0.38 | 0.07 | 1.41 | 0.06 | 0.20 | 0.29 | 0.05 | 0.02 | 0.28 | 0.24 | 0.09 | 0.02 | 0.11 | 0.18 | 0.32 | 3.51 | 6.46 |
J5 | 12.18 | 12.18 | 8.26 | 6.27 | 0.52 | 10.55 | 0.18 | 0.03 | 1.50 | 0.08 | 0.83 | 0.88 | 0.16 | 0.02 | 0.36 | 0.29 | 0.08 | 0.02 | 0.10 | 0.22 | 0.51 | 2.63 | 4.33 |
J6 | 14.12 | 14.12 | 8.46 | 5.66 | 0.12 | 6.85 | 2.52 | 1.69 | 5.06 | 0.54 | 3.98 | 2.71 | 1.08 | 0.30 | 0.99 | 0.72 | 0.13 | 0.02 | 0.19 | 0.52 | 0.16 | 3.33 | 4.34 |
J7 | 15.30 | 15.30 | 7.76 | 2.99 | 0.09 | 5.48 | 1.53 | 2.15 | 7.71 | 0.53 | 2.26 | 2.26 | 0.52 | 0.64 | 1.07 | 0.78 | 0.14 | 0.03 | 0.21 | 0.57 | 0.47 | 3.23 | 4.63 |
J8 | 13.83 | 13.83 | 6.80 | 3.60 | 0.21 | 6.03 | 1.10 | 1.49 | 5.88 | 0.26 | 1.60 | 3.87 | 0.22 | 2.52 | 3.83 | 2.49 | 0.26 | 0.05 | 0.46 | 1.70 | 5.15 | 3.58 | 4.01 |
J9 | 17.03 | 17.03 | 0.87 | 0.30 | 0.33 | 2.03 | 0.04 | 0.13 | 1.09 | 0.38 | 0.22 | 0.83 | 0.35 | 0.42 | 12.80 | 6.47 | 1.09 | 0.25 | 2.32 | 3.06 | 1.11 | 3.25 | 5.43 |
J10 | 18.33 | 18.33 | 0.25 | 0.04 | 0.27 | 1.70 | 0.03 | 0.04 | 0.61 | 0.33 | 0.12 | 0.54 | 0.30 | 0.23 | 14.24 | 3.79 | 2.10 | 0.31 | 1.40 | 2.28 | 0.72 | 3.14 | 5.91 |
J11 | 13.80 | 13.80 | 0.05 | 0.27 | 0.58 | 1.12 | 0.34 | 0.28 | 0.30 | 0.62 | 0.22 | 0.18 | 0.60 | 0.10 | 10.47 | 0.52 | 8.83 | 1.06 | 1.87 | 2.61 | 0.36 | 2.76 | 4.60 |
J12 | 12.17 | 12.17 | 0.10 | 0.29 | 0.68 | 1.10 | 0.42 | 0.35 | 0.31 | 0.72 | 0.29 | 0.15 | 0.70 | 0.15 | 10.17 | 3.37 | 2.99 | 0.19 | 7.15 | 2.76 | 0.35 | 2.69 | 4.06 |
J13 | 13.10 | 13.10 | 7.89 | 5.36 | 0.34 | 8.42 | 0.81 | 0.83 | 3.55 | 0.10 | 0.97 | 6.22 | 1.53 | 0.53 | 1.38 | 0.95 | 0.15 | 0.03 | 0.22 | 0.67 | 2.30 | 3.26 | 4.16 |
ID | S.1 | S.2 | S.3 | S.4 | S.5 | S.6 | S.7 | S.8 | S.9 | S.10 | S.11 | S.12 | S.13 | S.14 | S.15 | S.16 | S.17 | S.18 | S.19 | S.20 | S.21 | Ave. | ST.D |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J1 | 3.20 | 0.22 | −0.24 | −0.65 | −3.41 | −0.15 | −6.91 | −4.07 | −1.36 | −3.96 | −3.10 | −3.12 | −6.21 | −4.02 | −1.78 | −2.92 | −2.73 | −4.51 | −2.98 | −3.86 | −5.12 | −2.75 | 2.34 |
J2 | 3.18 | 3.18 | 0.10 | −0.31 | −2.98 | 0.20 | −5.12 | −3.91 | −1.03 | −3.82 | −2.69 | −2.72 | −4.96 | −3.86 | −1.45 | −2.63 | −2.44 | −4.51 | −2.70 | −3.69 | −5.30 | −2.26 | 2.42 |
J3 | 3.03 | 3.03 | 2.69 | 1.17 | −1.27 | 1.55 | −1.64 | −0.92 | −0.01 | −3.86 | −3.35 | −2.33 | −4.61 | −3.51 | −1.97 | −1.85 | −2.47 | −4.61 | −2.41 | −2.04 | −1.70 | −1.29 | 2.37 |
J4 | 2.96 | 2.96 | 2.61 | 2.38 | −0.88 | 1.89 | −0.96 | −2.69 | 0.34 | −2.83 | −1.63 | −1.24 | −2.92 | −4.07 | −1.26 | −1.43 | −2.39 | −3.91 | −2.23 | −1.71 | −1.15 | −0.87 | 2.21 |
J5 | 2.50 | 2.50 | 2.11 | 1.84 | −0.65 | 2.36 | −1.73 | −3.41 | 0.41 | −2.50 | −0.19 | −0.13 | −1.81 | −3.86 | −1.02 | −1.22 | −2.48 | −4.14 | −2.25 | −1.52 | −0.67 | −0.76 | 2.09 |
J6 | 2.65 | 2.65 | 2.13 | 1.73 | −2.15 | 1.92 | 0.93 | 0.53 | 1.62 | −0.61 | 1.38 | 1.00 | 0.08 | −1.20 | −0.01 | −0.33 | −2.06 | −3.82 | −1.67 | −0.66 | −1.85 | 0.11 | 1.78 |
J7 | 2.73 | 2.73 | 2.05 | 1.10 | −2.41 | 1.70 | 0.42 | 0.76 | 2.04 | −0.63 | 0.81 | 0.82 | −0.66 | −0.45 | 0.07 | −0.25 | −1.95 | −3.61 | −1.55 | −0.57 | −0.77 | 0.11 | 1.68 |
J8 | 2.63 | 2.63 | 1.92 | 1.28 | −1.56 | 1.80 | 0.10 | 0.40 | 1.77 | −1.34 | 0.47 | 1.35 | −1.53 | 0.92 | 1.34 | 0.91 | −1.35 | −2.90 | −0.77 | 0.53 | 1.64 | 0.49 | 1.53 |
J9 | 2.84 | 2.84 | −0.14 | −1.20 | −1.12 | 0.71 | −3.30 | −2.01 | 0.08 | −0.96 | −1.53 | −0.19 | −1.04 | −0.87 | 2.55 | 1.87 | 0.09 | −1.37 | 0.84 | 1.12 | 0.11 | −0.03 | 1.63 |
J10 | 2.91 | 2.91 | −1.38 | −3.19 | −1.31 | 0.53 | −3.69 | −3.32 | −0.50 | −1.11 | −2.15 | −0.61 | −1.21 | −1.45 | 2.66 | 1.33 | 0.74 | −1.19 | 0.34 | 0.83 | −0.32 | −0.44 | 1.92 |
J11 | 2.62 | 2.62 | −2.90 | −1.32 | −0.55 | 0.11 | −1.07 | −1.26 | −1.22 | −0.47 | −1.52 | −1.70 | −0.51 | −2.34 | 2.35 | −0.66 | 2.18 | 0.05 | 0.63 | 0.96 | −1.02 | −0.24 | 1.61 |
J12 | 2.50 | 2.50 | −2.34 | −1.24 | −0.39 | 0.10 | −0.87 | −1.04 | −1.18 | −0.33 | −1.25 | −1.90 | −0.36 | −1.91 | 2.32 | 1.21 | 1.10 | −1.69 | 1.97 | 1.01 | −1.05 | −0.14 | 1.56 |
J13 | 2.57 | 2.57 | 2.07 | 1.68 | −1.07 | 2.13 | −0.21 | −0.19 | 1.27 | −2.34 | −0.04 | 1.83 | 0.42 | −0.64 | 0.32 | −0.05 | −1.93 | −3.47 | −1.50 | −0.40 | 0.83 | 0.18 | 1.66 |
ID | # of Non-Zero of Scenario | -J1 | -J2 | -J3 | -J4 | -J5 | -J6 | -J7 | -J8 | -J9 | -J10 | -J11 | -J12 | -J13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J1 | 21 | 1.00 * | - | 1.00 ** | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J2 | 21 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J3 | 21 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J4 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J5 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J6 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J7 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J8 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
J9 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 | 1.00 |
J10 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 | 1.00 |
J11 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 | 1.00 |
J12 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - | 1.00 |
J13 | 21 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | - |
ID | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | J9 | J10 | J11 | J12 | J13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J1 | 1.00 | 0.96 | 0.81 | 0.79 | 0.77 | 0.60 | 0.64 | 0.63 | 0.67 | 0.55 | 0.38 | 0.40 | 0.61 |
J2 | 0.96 | 1.00 | 0.85 | 0.85 | 0.82 | 0.69 | 0.71 | 0.65 | 0.66 | 0.56 | 0.43 | 0.45 | 0.67 |
J3 | 0.81 | 0.85 | 1.00 | 0.95 | 0.85 | 0.73 | 0.77 | 0.75 | 0.45 | 0.30 | 0.19 | 0.25 | 0.78 |
J4 | 0.79 | 0.85 | 0.95 | 1.00 | 0.96 | 0.78 | 0.77 | 0.73 | 0.43 | 0.30 | 0.18 | 0.23 | 0.82 |
J5 | 0.77 | 0.82 | 0.85 | 0.96 | 1.00 | 0.79 | 0.77 | 0.73 | 0.46 | 0.33 | 0.14 | 0.19 | 0.86 |
J6 | 0.60 | 0.69 | 0.73 | 0.78 | 0.79 | 1.00 | 0.97 | 0.77 | 0.24 | 0.10 | -0.02 | 0.09 | 0.86 |
J7 | 0.64 | 0.71 | 0.77 | 0.77 | 0.77 | 0.97 | 1.00 | 0.88 | 0.33 | 0.18 | -0.01 | 0.10 | 0.89 |
J8 | 0.63 | 0.65 | 0.75 | 0.73 | 0.73 | 0.77 | 0.88 | 1.00 | 0.52 | 0.35 | 0.03 | 0.16 | 0.89 |
J9 | 0.67 | 0.66 | 0.45 | 0.43 | 0.46 | 0.24 | 0.33 | 0.52 | 1.00 | 0.96 | 0.68 | 0.77 | 0.41 |
J10 | 0.55 | 0.56 | 0.30 | 0.30 | 0.33 | 0.10 | 0.18 | 0.35 | 0.96 | 1.00 | 0.78 | 0.81 | 0.25 |
J11 | 0.38 | 0.43 | 0.19 | 0.18 | 0.14 | -0.02 | -0.01 | 0.03 | 0.68 | 0.78 | 1.00 | 0.90 | -0.01 |
J12 | 0.40 | 0.45 | 0.25 | 0.23 | 0.19 | 0.09 | 0.10 | 0.16 | 0.77 | 0.81 | 0.90 | 1.00 | 0.09 |
J13 | 0.61 | 0.67 | 0.78 | 0.82 | 0.86 | 0.86 | 0.89 | 0.89 | 0.41 | 0.25 | -0.01 | 0.09 | 1.00 |
ID | J1 | J2 | J3 | J4 | J5 | J6 | J7 | J8 | J9 | J10 | J11 | J12 | J13 | Total Entropy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J1 | 7.19 * | 1.23 ** | 0.53 | 0.50 | 0.44 | 0.22 | 0.26 | 0.26 | 0.29 | 0.18 | 0.08 | 0.09 | 0.23 | 11.51 |
J2 | 1.23 | 7.82 | 0.66 | 0.65 | 0.55 | 0.33 | 0.35 | 0.28 | 0.29 | 0.19 | 0.10 | 0.12 | 0.30 | 12.87 |
J3 | 0.53 | 0.66 | 8.04 | 1.13 | 0.66 | 0.38 | 0.45 | 0.42 | 0.11 | 0.05 | 0.02 | 0.03 | 0.47 | 12.95 |
J4 | 0.50 | 0.65 | 1.13 | 8.08 | 1.31 | 0.46 | 0.45 | 0.38 | 0.10 | 0.05 | 0.02 | 0.03 | 0.57 | 13.72 |
J5 | 0.44 | 0.55 | 0.66 | 1.31 | 7.73 | 0.49 | 0.45 | 0.38 | 0.12 | 0.06 | 0.01 | 0.02 | 0.69 | 12.90 |
J6 | 0.22 | 0.33 | 0.38 | 0.46 | 0.49 | 7.81 | 1.42 | 0.46 | 0.03 | 0.00 | 0.00 | 0.00 | 0.68 | 12.28 |
J7 | 0.26 | 0.35 | 0.45 | 0.45 | 0.45 | 1.42 | 7.71 | 0.73 | 0.06 | 0.02 | 0.00 | 0.00 | 0.77 | 12.67 |
J8 | 0.26 | 0.28 | 0.42 | 0.38 | 0.38 | 0.46 | 0.73 | 7.72 | 0.15 | 0.07 | 0.00 | 0.01 | 0.78 | 11.64 |
J9 | 0.29 | 0.29 | 0.11 | 0.10 | 0.12 | 0.03 | 0.06 | 0.15 | 7.69 | 1.28 | 0.31 | 0.45 | 0.09 | 10.96 |
J10 | 0.18 | 0.19 | 0.05 | 0.05 | 0.06 | 0.00 | 0.02 | 0.07 | 1.28 | 7.82 | 0.47 | 0.53 | 0.03 | 10.73 |
J11 | 0.08 | 0.10 | 0.02 | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.31 | 0.47 | 7.51 | 0.83 | 0.00 | 9.34 |
J12 | 0.09 | 0.12 | 0.03 | 0.03 | 0.02 | 0.00 | 0.00 | 0.01 | 0.45 | 0.53 | 0.83 | 7.46 | 0.00 | 9.57 |
J13 | 0.23 | 0.30 | 0.47 | 0.57 | 0.69 | 0.68 | 0.77 | 0.78 | 0.09 | 0.03 | 0.00 | 0.00 | 7.71 | 12.33 |
References
- German Water Partnership (GWP). Presentation of the Results of the GWP Work Group 2 “WATER 4.0”; German Water Partnership e. V.: Berlin, Germany, 2016. [Google Scholar]
- Madison Water Utility. Project H2O Metering System. Available online: https://www.cityofmadison.com/water/sustainability/project-h2o-metering-system (accessed on 14 June 2018).
- Walski, T.M. Technique for calibrating network models. J. Water Resour. Plan. Manag. 1983, 109, 360–372. [Google Scholar] [CrossRef]
- Yu, G.; Powell, R.S. Optimal design of meter placement in water distribution systems. Int. J. Syst. Sci. 1994, 25, 2155–2166. [Google Scholar] [CrossRef]
- Bush, C.A.; Uber, J.G. Sampling design method for water distribution model calibration. J. Water Resour. Plan. Manag. 1998, 124, 334–344. [Google Scholar] [CrossRef]
- De Schaetzen, W.B.F.; Walters, G.A.; Savić, D.A. Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water Elsevier Sci. 2000, 2, 141–152. [Google Scholar] [CrossRef]
- Morosini, A.F.; Costanzo, F.; Veltri, P.; Savić, D.A. Identification of measurement points for calibration of water distribution network models. Procedia Eng. 2014, 89, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Farley, B.; Boxall, J.B.; Mounce, S.R. Optimal location of pressure meters for burst detection. In Proceedings of the 10th Annual Water Distribution System Analysis Conference, Kruger National Park, South Africa, 17–20 August 2008. [Google Scholar]
- Yoo, D.G.; Chang, D.E.; Jun, H.; Kim, J.H. Optimization of pressure gauge locations for water distribution systems using entropy theory. Environ. Monit. Assess. 2012, 184, 7309–7322. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, S.E.; Gagatsis, A.; Xanthos, S.; Kranioti, S.; Agathokleous, A.; Fragiadakis, M. Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resour. Manag. 2003, 27, 4443–4468. [Google Scholar] [CrossRef]
- Casillas, M.V.; Garza-Castanon, L.E.; Puig, V. Extended-horizon analysis of pressure sensitivities for leak detection in water distribution networks: Application to the Barcelona network. In European Control Conference (ECC); European IEEE: Zurich, Switzerland, 2013; pp. 401–409. [Google Scholar]
- Nejjari, F.; Sarrate, R.; Blesa, J. Optimal pressure sensor placement in water distribution networks minimizing leak location uncertainty. Procedia Eng. 2015, 119, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Steffelbauer, D.B.; Fuchs-Hanusch, D. Efficient sensor placement for leak localization considering uncertainties. Water Resour. Manag. 2016, 30, 5517–5533. [Google Scholar] [CrossRef]
- Li, C.; Du, K.; Tu, J.; Dong, W. Optimal placement of pressure sensors in water distribution system based on clustering analysis of pressure sensitive matrix. Procedia Eng. 2017, 186, 405–411. [Google Scholar]
- Rossman, L. EPANET User’s Manual; United States Environmental Protection Agency (EPA): Washington, DC, USA, 2000.
- Awumah, K.; Goulter, I.; Bhatt, S.K. Assessment of Reliability in Water Distribution Networks Using Entropy Based Measures. Stochastic Environmental Research and Risk Assessment; Springer: Berlin/Heidelberg, Germany, 1990; Volume 4, pp. 309–320. [Google Scholar]
- Awumah, K.; Goulter, I.; Bhatt, S.K. Entropy-based redundancy measures in water-distribution networks. J. Hydraul. Eng. ASCE 1991, 117, 595–614. [Google Scholar] [CrossRef]
- Tanyimboh, T.T.; Templeman, A.B. Calculating maximum entropy flows in network. J. Oper. Res. Soc. 1993, 44, 383–396. [Google Scholar] [CrossRef]
- Ang, W.K.; Jowitt, P.W. Some new insights on informational entropy for water distribution networks. Eng. Optim. 2005, 37, 277–289. [Google Scholar] [CrossRef]
- Setiadi, Y.; Tanyimboh, T.T.; Templeman, A.B. Modeling errors, entropy and the hydraulic reliability of water distribution systems. Adv. Eng. Softw. 2005, 36, 780–788. [Google Scholar] [CrossRef]
- Atkinson, S.; Farmani, R.; Memon, F.A.; Butler, D. Reliability indicators for water distribution system design: Comparison. J. Water Resour. Plan. Manag. 2014, 140, 160–168. [Google Scholar] [CrossRef]
- Raad, D.N.; Sinske, A.N.; Van Vuuren, J.H. Comparison of four reliability surrogate measures for water distribution systems design. Water Resour. Res. 2010, 46, W05524. [Google Scholar] [CrossRef]
- Tanyimboh, T.T.; Siew, C.; Saleh, S.; Czajkowska, A. Comparison of surrogate measures for the reliability and redundancy of water distribution systems. Water Resour. Manag. 2016, 30, 3535. [Google Scholar] [CrossRef] [Green Version]
- Creaco, E.; Fortunato, A.; Franchini, M.; Mazzola, M. Comparison between entropy and resilience as indirect measures of reliability in the framework of water distribution network design. Procedia Eng. 2014, 70, 379–388. [Google Scholar] [CrossRef]
- Tanyimboh, T.T.; Templeman, A.B. A quantified assessment of the relationship between the reliability and entropy of water distribution systems. Eng. Optim. 2000, 33, 179–199. [Google Scholar] [CrossRef]
- Santonastaso, G.F.; Di Nardo, A.; Di Natale, M.; Giudicianni, C.; Greco, R. Scaling-laws of flow entropy with topological metrics of water distribution networks. Entropy 2018, 20, 95. [Google Scholar] [CrossRef]
- Baek, C.W.; Jun, H.D.; Kim, J.H. Development of HSPDA model for water distribution system under abnormal operating condition. J. Korean Soc. Civ. Eng. 2007, 27, 475–488. [Google Scholar]
- Baek, C.W.; Jun, H.D.; Kim, J.H. Estimating the reliability of water distribution systems using HSPDA model and distance measure method. J. Korea Water Resour. Assoc. 2010, 43, 769–780. [Google Scholar] [CrossRef]
- Baek, C.W.; Jun, H.D.; Kim, J.H. Estimation of the reliability of water distribution systems using HSPDA model and ADF index. J. Korea Water Resour. Assoc. 2010, 43, 201–210. [Google Scholar] [CrossRef]
- Giustolisi, O.; Kapelan, Z.; Savic, D.A. Extended period simulation analysis considering valve shutdowns. J. Water Resour. Plan. Manag. 2008, 134, 527–537. [Google Scholar] [CrossRef]
- Giustolisi, O.; Savic, D.A.; Kapelan, Z. Pressure-driven demand and leakage simulation for water distribution networks. J. Hydraul. Eng. 2008, 134, 626–635. [Google Scholar] [CrossRef]
- Wu, Y.W.; Wang, R.H.; Walski, T.M.; Yang, S.Y.; Bowdler, D.; Baggett, C.C. Extended global-gradient algorithm for pressure-dependent water distribution analysis. J. Water Resour. Plan. Manag. 2009, 135, 13–22. [Google Scholar] [CrossRef]
- Lee, H.M.; Yoo, D.G.; Kang, D.; Jun, H.; Kim, J.H. Uncertainty quantification of pressure-driven analysis for water distribution network modeling. Water Sci. Technol.: Water Supply 2016, 16, 599–610. [Google Scholar] [CrossRef]
- Todini, E. A more realistic approach to the “extended period simulation” of water distribution networks. In Advances in Water Supply Management; Maksimovic, C., Butler, D., Memon, F.A., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 2003; pp. 173–183. [Google Scholar]
- Todini, E. Towards realistic extended period simulations (EPS) in looped pipe network. In Proceedings of the 8th Annual International Symposium on Water Distribution Systems Analysis (CD-ROM), Cincinnati, OH, USA, 27–30 August 2006; ASCE: Reston, VA, USA, 2006. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; The University of Illinois Press: Urbana, IL, USA, 1949. [Google Scholar]
- Yang, Y.; Burn, D.H. An entropy approach to data collection network design. J. Hydrol. 1994, 157, 307–324. [Google Scholar] [CrossRef]
- Mogheir, Y.; de Lima, J.L.M.P.; Singh, V.P. Characterizing the spatial variability of groundwater quality using the entropy theory: I. Synthetic data. Hydrol. Process. 2004, 18, 2165–2179. [Google Scholar] [CrossRef] [Green Version]
- Mogheir, Y.; de Lima, J.L.M.P.; Singh, V.P. Characterizing the spatial variability of groundwater quality using the entropy theory: II. Case study from Gaza Strip. Hydrol. Process. 2004, 18, 2579–2590. [Google Scholar] [CrossRef] [Green Version]
- Chapman, T.G. Entropy as a measure of hydrologic data uncertainty and model performance. J. Hydrol. 1986, 85, 111–126. [Google Scholar] [CrossRef]
- Todini, E.; Pilati, S. A Gradient Algorithm for the Analysis of Pipe Network. Computer Applications in Water Supply, Volume 1—System Analysis and Simulation; Coulbeck, B., Chu-Hou, O., Eds.; Wiley: London, UK, 1988; pp. 1–20. [Google Scholar]
- Wu, Z.Y.; Wang, R.H.; Walski, T.; Yang, S.Y.; Bowdler, D.; Baggett, C.C. Efficient pressure dependent demand model for large water distribution system analysis. In Proceedings of the 8th Annual International Symposium on Water Distribution Systems Analysis (CD-ROM), Cincinnati, OH, USA, 27–30 August 2006; ASCE: Reston, VA, USA, 2006. [Google Scholar]
- Wagner, J.M.; Shamir, U.; Marks, D.H. Water distribution reliability: Simulation methods. J. Water Resour. Plan. Manag. 1988, 114, 276–294. [Google Scholar] [CrossRef]
- K-water. K-NRisk User’s Manual; K-water: Daejeon, Korea, 2017. [Google Scholar]
- Lee, H.M.; Shin, E.H.; Yoo, D.G. Development and applications of K-NRisk for pressure dependent demand analysis in water distribution networks. J. Korean Soc. Hazard. Mitig. 2018, 18, 231–238. [Google Scholar] [CrossRef]
- Walski, T.M. Water distribution valve topology for reliability analysis. Reliab. Eng. Syst. Saf. 1993, 42, 21–27. [Google Scholar] [CrossRef]
- Jun, H. Strategic Valve Locations in a Water Distribution System. Ph.D. Dissertation, Virginia Tech., Blacksburg, VA, USA, 2005. [Google Scholar]
- Ozger, S.S. A Semi-Pressure-Driven Approach to Reliability Assessment of Water Distribution Networks. Ph.D. Dissertation, Arizona State University, Tempe, AZ, USA, 2003. [Google Scholar]
- Walski, T.M.; Brill, E.D., Jr.; Gessler, J.; Goulter, I.C.; Jeppson, R.M.; Lansey, K.; Lee, H.L.; Liebman, J.C.; Mays, L.; Morgan, D.R.; et al. Battle of the network models: Epilogue. J. Water Resour. Plan. Manag. 1987, 113, 191–203. [Google Scholar] [CrossRef]
- Kapelan, Z.S.; Savic, D.A.; Walters, G.A. Multiobjective sampling design for water distribution model calibration. J. Water Resour. Plan. Manag. 2003, 129, 466–479. [Google Scholar] [CrossRef]
- Korea Water Works Association (KWWA). Standards for Water Supply Facilities; Korea Water Works Association (KWWA): Seoul, Korea, 2010. [Google Scholar]
- Behzadian, K.; Kapelan, Z.; Savic, D.; Ardeshir, A. Stochastic sampling design using a multi-objective genetic algorithm and adaptive neural networks. Environ. Model. Softw. 2009, 24, 530–541. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.G.; Suh, M.Y.; Kim, J.H.; Jun, H.; Chung, G. Subsystem-based pressure dependent demand analysis in water distribution systems using effective supply. KSCE J. Civ. Eng. 2012, 16, 457–464. [Google Scholar] [CrossRef]
Simulated State | Water Use Relation | Example |
---|---|---|
Normal condition | Supply = Total usage (demand) | Middle and long-term construction plan and design of water distribution networks (WDNs) |
Supply = Usage + Leakage | Current pipe network analysis considering usual leakage | |
Abnormal condition | Supply = Usage + Leakage | Pipe network analysis considering the dominant effect of leakage |
Supply < Usage | Shortage of supply due to drought or demand change | |
Supply < Usage + Leakage | Pipe failure due to various causes |
Gradient Method | Global Gradient Method | |
---|---|---|
Matrix Equation | ||
Notation (different) | known nodal demands | vector of actual demands and leakages for pressure deficient nodes |
diagonal matrix for pressure-dependent (head-outflow, pressure-leakage relation) nodes with elements | ||
Notation (common) | unknown pipe discharge | |
the unknown nodal heads | ||
known nodal heads | ||
diagonal matrix for pipes and pumps | ||
, topological incidence matrix that defines the pipe and node connectivity | ||
topological incidences for known-head nodes | ||
= total number of nodes, = number of unknown-head nodes | ||
= total number of links |
Analysis Method | DDA | PDA |
---|---|---|
Application | Normal operation | Normal/Abnormal operation |
Reliability of normal state analysis | High | High |
Reliability of abnormal state analysis | Low | High |
Assumption | Demand is always satisfied | Supply at each node and leakage of a pipe network are affected by the pressure heads of the node and pipe network. |
Disadvantage | Unrealistic results like negative pressures may be derived from a hydraulic analysis of abnormal state. | A relation (head-outflow relation (HOR)) is needed between the pressure head and supply at each node, as well as between the water pressure and leakage of a pipe network. |
ID | Elevation (m) | Demand (CMH) | Type | Degree of Node (DoN) |
---|---|---|---|---|
1 | 27.43 | 0 | Junction | 2 |
2 | 33.53 | 212.4 | Junction | 4 |
3 | 28.96 | 212.4 | Junction | 3 |
4 | 32 | 640.8 | Junction | 3 |
7 | 29.56 | 640.8 | Junction | 4 |
6 | 31.39 | 684.0 | Junction | 4 |
5 | 30.48 | 212.4 | Junction | 4 |
13 | 33.53 | 0 | Junction | 3 |
8 | 31.39 | 327.6 | Junction | 3 |
9 | 32.61 | 0 | Junction | 3 |
10 | 34.14 | 0 | Junction | 3 |
11 | 35.05 | 108 | Junction | 2 |
12 | 36.58 | 108 | Junction | 2 |
20 (R1) | 60.96 | - | Reservoir | 1 |
21 (R2) | 60.96 | - | Reservoir | 2 |
ID | Start Node | End Node | Length (m) | Diameter (mm) | Roughness, C (H-W) |
---|---|---|---|---|---|
P1 | 20 (J1) | 1 | 609.6 | 762 | 130 |
P2 | 1 | 2 | 243.8 | 762 | 128 |
P3 | 2 | 3 | 1524 | 609 | 126 |
P4 | 3 | 4 | 1127.76 | 609 | 124 |
P5 | 4 | 5 | 1188.72 | 406 | 122 |
P8 | 3 | 7 | 944.88 | 254 | 116 |
P10 | 7 | 6 | 883.92 | 305 | 112 |
P7 | 4 | 6 | 762 | 254 | 118 |
P9 | 2 | 7 | 1676.4 | 381 | 114 |
P11 | 6 | 5 | 883.92 | 305 | 110 |
P13 | 6 | 13 | 762 | 254 | 106 |
P12 | 13 | 5 | 1371.6 | 381 | 108 |
P15 | 2 | 10 | 944.88 | 305 | 102 |
P14 | 7 | 8 | 822.96 | 254 | 104 |
P16 | 10 | 9 | 579 | 305 | 100 |
P20 | 9 | 8 | 883.92 | 203 | 92 |
P21 | 8 | 13 | 944.88 | 305 | 90 |
P17 | 10 | 11 | 487.68 | 203 | 98 |
P18 | 11 | 12 | 457.2 | 152 | 96 |
P19 | 9 | 12 | 502.92 | 203 | 94 |
P6 | 21 (J2) | 5 | 640 | 406 | 120 |
Rank | PDA | DDA | ||
---|---|---|---|---|
Node | Total Entropy | Node | Total Entropy | |
1 | J4 | 13.72 | J7 | 17.29 |
2 | J3 | 12.95 | J13 | 17.12 |
3 | J5 | 12.9 | J4 | 17.08 |
4 | J2 | 12.87 | J5 | 17.03 |
5 | J7 | 12.67 | J6 | 16.85 |
6 | J13 | 12.33 | J8 | 16.48 |
7 | J6 | 12.28 | J3 | 16.3 |
8 | J8 | 11.64 | J10 | 16.29 |
9 | J1 | 11.51 | J9 | 15.92 |
10 | J9 | 10.96 | J1 | 14.24 |
11 | J10 | 10.73 | J12 | 13.86 |
12 | J12 | 9.57 | J11 | 13.57 |
13 | J11 | 9.34 | J2 | 12.12 |
Failure Pipe | Average Pressure Head (m) | Available Water Supply (PDA, CMH) | ||
---|---|---|---|---|
DDA (1) | PDA (2) | Difference (2-1) | ||
P1 | −58.34 (UR *) | 4.19 | 62.53 | 1637.3 |
P2 | −51.45 (UR *) | 6.17 | 57.62 | 1637.3 |
P3 | 11.89 | 15.84 | 3.95 | 2749.65 |
P4 | 17.6 | 18.68 | 1.08 | 3007.01 |
P5 | 21.01 | 21.17 | 0.16 | 3136.55 |
P6 | 15.01 | 16.63 | 1.62 | 2991.76 |
P7 | 20.45 | 20.64 | 0.19 | 3134.69 |
P8 | 20.38 | 20.58 | 0.2 | 3134.21 |
P9 | 17.51 | 18.85 | 1.34 | 3002.03 |
P10 | 20.99 | 21.15 | 0.16 | 3136.9 |
P11 | 20.11 | 20.39 | 0.28 | 3121.67 |
P12 | 19.37 | 19.78 | 0.41 | 3115.84 |
P13 | 21.01 | 21.16 | 0.15 | 3136.72 |
P14 | 20.55 | 20.8 | 0.25 | 3132.71 |
P15 | 6.9 | 16.73 | 9.83 | 3007.58 |
P16 | 19.64 | 20.14 | 0.5 | 3119.11 |
P17 | 17.62 | 20.4 | 2.78 | 3077.88 |
P18 | 20.97 | 21.14 | 0.17 | 3136.37 |
P19 | 18.45 | 20.69 | 2.24 | 3089.7 |
P20 | 21.5 | 21.51 | 0.01 | 3146.14 |
P21 | 19.96 | 20.6 | 0.64 | 3099.34 |
COV ** (%) | 194.8 | 8.6 | - | - |
Rank | DDA | PDA | ||||
---|---|---|---|---|---|---|
Node | Total Entropy | Average Pressure Head (psi) | Node | Total Entropy | Average Pressure Head (psi) | |
1 | Junc 36 | 144.7 | 70.9 | Junc 36 | 145.6 | 72.9 |
2 | Junc 40 | 144.7 | 70.9 | Junc 39 | 145.6 | 72.9 |
3 | Junc 39 | 143.1 | 70.9 | Junc 40 | 145.6 | 72.9 |
4 | Junc 60 | 141.3 | 56.1 | Junc 42 | 139.7 | 72.9 |
5 | Junc 59 | 140.9 | 56.1 | Junc 16 | 137.8 | 92.0 |
6 | Junc 5 | 140.6 | 77.8 | Junc 60 | 137.5 | 58.2 |
7 | Junc 42 | 140.1 | 70.9 | Junc 11 | 137.4 | 102.9 |
8 | Junc 20 | 139.3 | 83.2 | Junc 26 | 137.3 | 64.0 |
9 | Junc 68 | 139.3 | 77.8 | Junc 27 | 137.3 | 79.2 |
10 | Junc 67 | 139.2 | 77.8 | Junc 5 | 137.0 | 79.9 |
11 | Junc 19 | 139.1 | 83.2 | Junc 68 | 136.9 | 79.9 |
12 | Junc 16 | 139.0 | 90.1 | Junc 59 | 136.5 | 58.2 |
13 | Junc 22 | 138.8 | 78.6 | Junc 20 | 136.3 | 85.1 |
14 | Junc 78 | 138.7 | 43.2 | Junc 22 | 136.1 | 80.5 |
15 | Junc 11 | 138.7 | 101.0 | Junc 67 | 136.0 | 79.9 |
Segment | Average Pressure after Segment Isolation | Available Water Supply | Amount of Water Cut-off in Each Segment (GPM *) | Total Amount of Water Cut-off (GPM) | |
---|---|---|---|---|---|
DDA | PDA | (PDA, GPM *) | |||
S1 | 58.62 | 58.62 | 970.38 | 2.25 | 2.25 |
S2 | 73.87 | 73.87 | 811.11 | 161.52 | 161.52 |
S3 | 74.09 | 74.09 | 899.64 | 72.99 | 72.99 |
S4 | 83.26 | 83.26 | 551.64 | 420.99 | 420.99 |
S5 | 61.79 | 61.79 | 836.31 | 136.32 | 136.32 |
S6 | 61.72 | 61.72 | 848.82 | 123.81 | 123.81 |
S7 | 45.64 | 46.36 | 804.97 | 162.33 | 167.66 |
S8 | 61.64 | 61.64 | 893.85 | 78.78 | 78.78 |
S9 | 61.77 | 61.77 | 908.46 | 64.17 | 64.17 |
S10 | 14.75 | 34.59 | 861.91 | 0 | 110.72 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, D.G.; Chang, D.E.; Song, Y.H.; Lee, J.H. Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation. Entropy 2018, 20, 576. https://doi.org/10.3390/e20080576
Yoo DG, Chang DE, Song YH, Lee JH. Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation. Entropy. 2018; 20(8):576. https://doi.org/10.3390/e20080576
Chicago/Turabian StyleYoo, Do Guen, Dong Eil Chang, Yang Ho Song, and Jung Ho Lee. 2018. "Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation" Entropy 20, no. 8: 576. https://doi.org/10.3390/e20080576
APA StyleYoo, D. G., Chang, D. E., Song, Y. H., & Lee, J. H. (2018). Optimal Placement of Pressure Gauges for Water Distribution Networks Using Entropy Theory Based on Pressure Dependent Hydraulic Simulation. Entropy, 20(8), 576. https://doi.org/10.3390/e20080576