Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications
Abstract
:1. Introduction
2. MTEP Theorem for Transitions between Enzyme Functional States
3. Transitional Entropy Productions, Rate-Limiting Steps, and the Evolution or Optimization toward Higher Catalytic Efficiency
- (a)
- Is MTEP requirement for a chosen transition producing corresponding optimized kinetic constants similar to their measured values?
- (b)
- Can rate-limiting steps be identified as those leading to the highest increase of overall entropy production during enzyme cycling?
- (c)
- Are rate-limiting steps connected to proton nano currents and to the shuttling of protons among enzyme, water molecules, substrate, and product?
- (d)
- Can MTEP optimization for rate-limiting steps lead to a significant increase over the already enormous catalytic power of enzymes [29], allowing us to find a natural upper limit for the construction of perfect enzymes, for instance, by focusing on transition state mutations which can lower the activation energy for those critical steps?
- (e)
- Can MTEP optimization for the most important free-energy conversion steps lead to high optimal efficiency for free energy storage and for free energy transduction from primary (driving) into secondary (driven) force?
3.1. Beta-Lactamases
3.2. Triosephosphate Isomerase
4. MTEP Theorem Optimization of Transition State Parameters for ATPase
5. Light-Activated Creation of the Protonmotive Force, Dissipation, and Free Energy Transduction Efficiency. The Example of Bacteriorhodopsin
- Which transition step, out of seven Ti steps (Figure 6a), is associated with the greatest entropy production?
- What is the rate limiting step among all Ti transitions involved in a complex interplay of retinal, protein atoms, and water molecule movements, resulting in a proton pumping and charge separation [47]?
- When MTEP theorem is used to optimize each transition, is there a single catalytic step for which photochemical quantum yield, the efficiency of free energy conversion, and total entropy production all exhibit increased optimal values with respect to values obtained without optimization?
6. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ziman, J.M. The general variational principle of transport theory. Can. J. Phys. 1956, 34, 1256–1273. [Google Scholar] [CrossRef]
- Sawada, Y. A thermodynamic variational principle in nonlinear non-equilibrium phenomena. Prog. Theor. Phys. 1981, 66, 68–76. [Google Scholar] [CrossRef]
- Ziegler, H. Chemical reactions and the principle of maximal entropy production. J. Appl. Math. Phys. 1983, 34, 832–844. [Google Scholar] [CrossRef]
- Ziegler, H.; Weheri, C. General principles governing irreversible processes. Il Nuovo Cimento B 1986, 96, 103–110. [Google Scholar] [CrossRef]
- Dewar, R.C. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A Math. Gen. 2003, 36, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen. 2005, 38, L371–L381. [Google Scholar] [CrossRef] [Green Version]
- Martyushev, L.V.; Seleznev, V.D. Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 2006, 426, 1–45. [Google Scholar] [CrossRef]
- Dewar, R.C.; Maritan, A.A. Theoretical Basis for Maximum Entropy Production. In Beyond the Second Law; Dewar, R.C., Lineweaver, C.H., Niven, R.K., Regenauer-Lieb, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 49–71. [Google Scholar]
- Juretić, D.; Županović, P. Photosynthetic models with maximum entropy production in irreversible charge transfer steps. J. Comp. Biol. Chem. 2003, 27, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Dewar, R.; Juretić, D.; Županović, P. The functional design of the rotary enzyme ATP synthase is consistent with maximum entropy production. Chem. Phys. Lett. 2006, 430, 177–182. [Google Scholar] [CrossRef]
- Bonačić Lošić, Ž.; Donđivić, T.; Juretić, D. Is the catalytic activity of triosephosphate isomerase fully optimized? An investigation based on maximization of entropy production. J. Biol. Phys. 2017, 43, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, M.E. Reaction and diffusion thermodynamics explain optimal temperatures of biochemical reactions. Sci. Rep. 2018, 8, 11105. [Google Scholar] [CrossRef]
- Juretić, D.; Bonačić Lošić, Ž.; Kuić, D.; Simunić, J.; Dobovišek, A. The maximum entropy production requirement for proton transfers enhances catalytic efficiency for β-lactamases. Biophys. Chem. 2019, 244, 11–21. [Google Scholar]
- Prigogine, I. Introduction to Thermodynamics of Irreversible Processes; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Juretić, D.; Westerhoff, H.V. Variation of efficiency with free-energy dissipation in models of biological energy transduction. Biophys. Chem. 1987, 28, 21–34. [Google Scholar] [CrossRef]
- Endres, R.G. Entropy production selects nonequilibrium states in multistable systems. Sci. Rep. 2017, 7, 14437. [Google Scholar] [CrossRef]
- Jaynes, E.T. The minimum entropy production principle. Ann. Rev. Phys. Chem. 1980, 31, 579–601. [Google Scholar] [CrossRef]
- Ono, S. Variational principles in thermodynamics and statistical mechanics of irreversible processes. Adv. Chem. Phys. 1961, 3, 267–321. [Google Scholar]
- Bruers, S.A. discussion on maximum entropy production and information theory. J. Phys. A Math. Theor. 2007, 40, 7441–7450. [Google Scholar] [CrossRef]
- Županović, P.; Kuić, D.; Bonačić-Lošić, Ž.; Petrov, D.; Juretić, D.; Brumen, M. The maximum entropy production principle and linear irreversible processes. Entropy 2010, 12, 996–1005. [Google Scholar] [CrossRef]
- Martyushev, L.M. Entropy and entropy production: Old misconceptions and new breakthroughs. Entropy 2013, 15, 1152–1170. [Google Scholar] [CrossRef]
- Andriesse, C.D.; Hollestelle, M.J. Minimum entropy production in photosynthesis. Biophys. Chem. 2001, 90, 249–253. [Google Scholar] [CrossRef]
- Jennings, R.C.; Engelmann, E.; Garlaschi, F.; Casazza, A.P.; Zucchelli, G. Photosynthesis and negative entropy production. Biochim. Biophys. Acta Bioenerg. 2005, 1709, 251–255. [Google Scholar] [CrossRef] [Green Version]
- Volk, T.; Pauluis, O.P. It is not the entropy you produce, rather, how you produce it. Phil. Trans. R. Soc. B 2010, 365, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.L. Free Energy Transduction in Biology. The Steady State Kinetic and Thermodynamic Formalism; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Hill, T.L. Free Energy Transduction and Biochemical Cycle Kinetics; Dover Publications, Inc.: Mineola, NY, USA, 2005. [Google Scholar]
- Juretić, D.; Županović, P. The free-energy transduction and entropy production in initial photosynthetic reactions. In Non-equilibrium thermodynamics and the production of entropy; Kleidon, A., Lorenz, R.D., Eds.; Springer: Berlin, Germany, 2005; pp. 161–171. [Google Scholar]
- Dobovišek, A.; Županović, P.; Brumen, M.; Bonačić-Lošić, Ž.; Kuić, D.; Juretić, D. Enzyme kinetics and the maximum entropy production principle. Biophys. Chem. 2011, 154, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Wolfenden, R.; Snider, M.J. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 2001, 34, 938–945. [Google Scholar] [CrossRef]
- Ambler, R.P. The structure of β-lactamases. Philos. Trans. R Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef]
- Christensen, H.; Martin, M.T.; Waley, G. β-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem. J. 1990, 266, 853–861. [Google Scholar]
- Ambler, R.P. The Amino Acid Sequence of Staphylococcus aureus Penicillinase. Biochem. J. 1975, 151, 197–218. [Google Scholar] [CrossRef]
- Chan, P.T. Nucleotide sequence of the Staphylococcus aureus PC1 beta-lactamase gene. Nucleic Acid Res. 1986, 25, 5940. [Google Scholar] [CrossRef]
- Wang, P.Z.; Novick, R.P. Nucleotide sequence and expression of the β-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. J. Bacteriol. 1987, 169, 1763–1766. [Google Scholar] [CrossRef]
- Sutcliffe, J.G. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. USA 1978, 75, 3737–3741. [Google Scholar] [CrossRef]
- Sutcliffe, J.G. Complete Nucleotide Sequence of the Escherichia coli Plasmid pBR322. Cold Spring Harb. Symp. Quant. Biol. 1979, 43, 77–90. [Google Scholar] [CrossRef]
- Thatcher, D.R. The Partial Amino Acid Sequence of the Extracellular P-Lactamase I of Bacillus cereus 569/H. Biochem. J. 1975, 147, 313–326. [Google Scholar]
- Hussain, M.; Pastor, F.I.; Lampen, J.O. Cloning and sequencing of the blaZ gene encoding beta-lactamase III, a lipoprotein of Bacillus cereus 569/H. J. Bacteriol. 1987, 169, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Knowles, J.R.; Albery, W.J. Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc. Chem. Res. 1977, 10, 105–111. [Google Scholar] [CrossRef]
- Richard, J.P. Protein flexibility and stiffness enable efficient enzymatic catalysis. J. Am. Chem. Soc. 2019, 141, 3320–3331. [Google Scholar] [CrossRef]
- Junge, W.; Sielaff, H.; Engelbrecht, S. Torque generation and elastic power transmission in the rotary FOF1-ATPase. Nature 2009, 459, 364–370. [Google Scholar] [CrossRef]
- Pänke, O.; Rumberg, B. Kinetic modeling of rotary CF0F1-ATP synthase: Storage of elastic energy during energy transduction. Biochim. Biophys. Acta 1999, 1412, 118–128. [Google Scholar] [CrossRef]
- Wickstrand, C.; Dods, R.; Royant, A.; Neutze, R. Bacteriorhodopsin: Would the real structural intermediates please stand up? Biochim Biophys. Acta. 2015, 1850, 536–553. [Google Scholar] [CrossRef] [Green Version]
- Michel, H.; Oesterhelt, D. Three-dimensional crystals of membrane proteins: Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 1980, 77, 1283–1285. [Google Scholar] [CrossRef]
- Dewar, R.C.; Lineweaver, C.H.; Niven, R.K.; Regenauer-Lieb, K. Maximum Entropy Production and Maximum Shannon Entropy as Germane Principles for the Evolution of Enzyme Kinetics. In Beyond the Second Law; Dewar, R.C.; Lineweaver, C.H.; Niven, R.K.; Regenauer-Lieb, K. Springer: Berlin/Heidelberg, Germany, 2014; pp. 361–382. [Google Scholar]
- Van Stokkum, I.H.M.; Lozier, R.H. Target analysis of the bacteriorhodopsin photocycle using a spectrotemporal model. J. Phys. Chem. B 2002, 106, 3477–3485. [Google Scholar] [CrossRef]
- Bondar, A.-N.; Baudry, J.; Suhai, S.; Fischer, S.; Smith, J.C. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions. J. Phys. Chem. B 2008, 112, 14729–14741. [Google Scholar] [CrossRef]
- Nango, E.; Royant, A.; Kubo, M.; Nakane, T.; Wickstrand, C.; Kimura, T.; Tanaka, T.; Tono, K.; Song, C.; Tanaka, R.; et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science 2016, 354, 1552. [Google Scholar] [CrossRef]
- Li, Y.-T.; Tian, Y.; Tian, H.; Tu, T.; Gou, G.-Y.; Wang, Q.; Qiao, Y.-C.; Yang, Y.; Ren, T.-L. A review on bacteriorhodopsin-based bioelectronic devices. Sensors 2018, 18, 1368. [Google Scholar] [CrossRef]
- Stuart, J.A.; Marcy, D.L.; Wise, K.J.; Birge, R.R. Volumetric optical memory based on bacteriorhodopsin. Synth. Met. 2002, 127, 3–15. [Google Scholar] [CrossRef]
- Jennings, R.C.; Belgio, E.; Zucchelli, G. Photosystem I, when excited in the chlorophyll Qy absorption band, feeds on negative entropy. Biophys. Chem. 2018, 233, 36–46. [Google Scholar] [CrossRef]
- Baiesi, M.; Maes, C. Life efficiency does not always increase with the dissipation rate. J. Phys. Commun. 2018, 2, 045017. [Google Scholar] [CrossRef]
- Weber, J.K.; Shukla, D.; Pande, V.S. Heat dissipation guides activation in signaling proteins. Proc. Natl. Acad. Sci. USA 2015, 112, 10377–10382. [Google Scholar] [CrossRef] [Green Version]
- Lan, G.; Sartori, P.; Neumann, S.; Sourjik, V.; Tu, Y. The energy-speed-accuracy tradeoff in sensory adaptation. Nat. Phys. 2012, 8, 422–428. [Google Scholar] [CrossRef]
- Hopfield, J.J. Kinetics proofreading: A new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 1974, 71, 4135–4139. [Google Scholar] [CrossRef]
- Qian, H. Reducing intrinsic biochemical noise in cells and its thermodynamic limit. J. Mol. Biol. 2006, 362, 387–392. [Google Scholar] [CrossRef]
- Hunt, K.L.C.; Hunt, P.M. Dissipation in steady states of chemical systems and deviations from minimum entropy production. Physica 1987, 147A, 48–60. [Google Scholar] [CrossRef]
- Chaisson, E.J. The natural science underlying big history. Sci. World J. 2014, 2014, 384912. [Google Scholar] [CrossRef]
- Frautschi, S. Entropy in an expanding universe. Science 1982, 217, 593–599. [Google Scholar] [CrossRef]
- Nath, S. Coupling in ATP synthesis: Test of thermodynamic consistency and formulation in terms of the principle of least action. Chem. Res. Lett. 2019, 723, 118–122. [Google Scholar] [CrossRef]
- Unrean, P.; Srienc, F. Metabolic networks evolve towards states of maximum entropy production. Metab. Eng. 2011, 13, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Kleidon, A. Nonequilibrium thermodynamics and maximum entropy production in the Earth system. Applications and implications. Naturwissenschaften 2009, 96, 653–677. [Google Scholar] [CrossRef]
- Zotin, A.A.; Zotin, A.I. Thermodynamic basis of developmental processes. J. Non-Equilib. Thermodyn. 1996, 21, 307–320. [Google Scholar] [CrossRef]
The Enzyme (C or M) * | States | Transitions | Reference | Outcome |
---|---|---|---|---|
β-Lactamase PC1 β-Lactamase RTEM β-Lactamase Lac1 (all C) | 3 | 3 | [13,28], this work | Evolutionary distance and overall entropy production rank these three lactamases in the order: Lac1 > RTEM > PC1. The same raking is found for optimal values of catalytic constant and for the catalytic efficiency. |
Triosephosphate isomerase (C) | 4 | 4 | [11] | The product release step identified as the rate-limiting step. Its optimization led to a 30% increase in enzyme activity, specificity constant kcat/KM, and overall entropy production. |
ATP synthase (M) | 5 | 6 | [10] | High optimal efficiency of free energy storage η = 0.69. Agreement with an empirical estimate for gearing ratio and optimal angular position for the ATP-binding transition. |
Bacteriorhodopsin (M) | 8 | 9 | [9,15], this work | The MTEP application for the recovery step leads to an additional increase in the output flux, efficiency, and overall entropy production |
State Probabilities | Transition Entropy Productions | Transition Fluxes | |||
---|---|---|---|---|---|
pO: | 0.04 | σT (kJmol−1K−1s−1) | 3.175 | JT (s−1) | 81.06 |
pO:ATP | 0.3 | σM (kJmol−1K−1s−1) | 1.117 | JM (s−1) | 81.06 |
pO:ADP | 0.49 | σDM (kJmol−1K−1s−1) | 0.158 | JDM (s−1) | 72.45 |
pO:P | 0.01 | σPM(kJmol−1K−1s−1) | 0.121 | JPM (s−1) | 72.45 |
pO:P.ADP | 0.16 | σPE (kJmol−1K−1s−1) | 0.026 | JPE (s−1) | 8.62 |
σDE (kJmol−1K−1s−1) | 0.007 | JDE (s−1) | 8.62 | ||
σtot (kJmol−1K−1s−1) | 4.604 |
Parameters * | Xsec = −18.84 kJmol−1 | Xsec = −26.86 kJmol−1 | Xsec = −123 kJmol−1 | |||
---|---|---|---|---|---|---|
No Optimization | T7 Optimization | No Optimization | T7 Optimization | No Optimization | T7 Optimization | |
k7 (s−1) | 700 | 1750 | 700 | 1750 | 700 | 1670 |
σL (kJmol−1K−1s−1) | 2.1 | 2.5 | 2.1 | 2.5 | 0.7 | 0.8 |
σD (kJmol−1K−1s−1) | 9.8·10−3 | 1.2·10−2 | 9.8·10−3 | 1.2·10−2 | 0.5 | 0.5 |
σ1 (kJmol−1K−1s−1) | 14.7 | 16.3 | 13.4 | 14.9 | 7.3·10−3 | 9.0·10−3 |
σ2 (kJmol−1K−1s−1) | 2.5·10−3 | 2.9·10−3 | 2.5·10−3 | 2.9·10−3 | 2.3·10−3 | 2.7·10−3 |
σ3 (kJmol−1K−1s−1) | 2.5·10−2 | 2.9·10−2 | 2.5·10−2 | 2.9·10−2 | 2.3·10−2 | 2.7·10−2 |
σ4 (kJmol−1K−1s−1) | 4.9·10−2 | 5.7·10−2 | 4.9·10−2 | 5.7·10−2 | 4.4·10−2 | 5.2·10−2 |
σ5 (kJmol−1K−1s−1) | 0.5 | 0.6 | 0.5 | 0.6 | 0.4 | 0.6 |
σ6 (kJmol−1K−1s−1) | 0.4 | 0.7 | 0.4 | 0.7 | 0.3 | 0.6 |
σ7 (kJmol−1K−1s−1) | 5.7 | 5.9 | 5.7 | 5.9 | 5.1 | 5.3 |
σtot (kJmol−1K−1s−1) | 23.4 | 25.9 | 22.2 | 24.5 | 7.1 | 7.8 |
J (s−1) | 46.2 | 51.1 | 46.2 | 51.1 | 42.1 | 46.5 |
η (%) | 11.1 | 11.1 | 15.8 | 15.8 | 71.1 | 71.2 |
J/JL (%) | 99.96 | 99.96 | 99.96 | 99.96 | 98.08 | 98.28 |
A/Aoc (%) | 91.95 | 91.95 | 91.95 | 91.95 | 97.33 | 97.20 |
S | 1.28 | 1.20 | 1.28 | 1.20 | 1.22 | 1.14 |
p1 | 0.46 | 0.51 | 0.46 | 0.51 | 0.51 | 0.55 |
p2 | 1.9·10−10 | 2.1·10−9 | 1.9·10−10 | 2.1·10−9 | 7.8·10−9 | 2.1·10−9 |
p3 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
p4 | 0.06 | 0.07 | 0.06 | 0.07 | 0.06 | 0.06 |
p5 | 0.10 | 0.11 | 0.10 | 0.11 | 0.09 | 0.10 |
p6 | 0.13 | 0.14 | 0.13 | 0.14 | 0.12 | 0.13 |
p7 | 0.15 | 0.13 | 0.15 | 0.13 | 0.14 | 0.12 |
p8 | 0.07 | 0.03 | 0.07 | 0.03 | 0.06 | 0.03 |
PC1 | RTEM | Lac1 | TIM | ATPase | bR | ||||
---|---|---|---|---|---|---|---|---|---|
Xsec (kJmol−1) | −18.84 | −26.86 | −123 | ||||||
Shannon’s entropy | exp | 0.68 | 0.74 | 0.86 | 0.31 | 1.17 | 1.28 | 1.28 | 1.22 |
Opt * | 0.65 | 0.54 | 0.78 | 0.27 | 1.17 | 1.20 | 1.20 | 1.14 | |
max | 1.10 | 1.10 | 1.10 | 1.39 | 1.61 | 2.08 | 2.08 | 2.08 | |
σtot (kJ/(mol·K·s)) | exp | 5.73 | 56.18 | 120.76 | 0.08 | 4.70 | 23.41 | 22.17 | 7.08 |
Opt * | 6.08 | 73.67 | 161.11 | 0.12 | 4.60 | 25.92 | 24.54 | 7.75 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juretić, D.; Simunić, J.; Bonačić Lošić, Ž. Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications. Entropy 2019, 21, 743. https://doi.org/10.3390/e21080743
Juretić D, Simunić J, Bonačić Lošić Ž. Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications. Entropy. 2019; 21(8):743. https://doi.org/10.3390/e21080743
Chicago/Turabian StyleJuretić, Davor, Juraj Simunić, and Željana Bonačić Lošić. 2019. "Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications" Entropy 21, no. 8: 743. https://doi.org/10.3390/e21080743
APA StyleJuretić, D., Simunić, J., & Bonačić Lošić, Ž. (2019). Maximum Entropy Production Theorem for Transitions between Enzyme Functional States and Its Applications. Entropy, 21(8), 743. https://doi.org/10.3390/e21080743