Quantum Advantages of Communication Complexity from Bell Nonlocality
Abstract
:1. Introduction
2. Bell Inequalities from Compatibility Graphs
2.1. Example 1
2.2. Example 2
3. Communication Complexity Problems
4. From Bell Inequality Violation to the Quantum Advantage for ICC Problems
4.1. Optimal Classical Protocol
4.2. Entanglement-Assisted Protocol
4.3. Popescu–Rohrlich Box Protocol
5. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef] [Green Version]
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Physics 1964, 1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419–478. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Ekert, A.K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Collantes, M.; Garcia-Escartin, J.C. Quantum random number generators. Rev. Mod. Phys. 2017, 89, 015004. [Google Scholar] [CrossRef] [Green Version]
- Buhrman, H.; Cleve, R.; Massar, S.; de Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 2010, 82, 665–698. [Google Scholar] [CrossRef] [Green Version]
- Yao, A.C.C. Some Complexity Questions Related to Distributive Computing (Preliminary Report). In Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing; Association for Computing Machinery: New York, NY, USA, 1979; pp. 209–213. [Google Scholar] [CrossRef]
- Brukner, C.; Żukowski, M.; Pan, J.W.; Zeilinger, A. Bell’s Inequalities and Quantum Communication Complexity. Phys. Rev. Lett. 2004, 92, 127901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degorre, J.; Kaplan, M.; Laplante, S.; Roland, J. The communication complexity of non-signaling distributions. In International Symposium on Mathematical Foundations of Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 270–281. [Google Scholar]
- Junge, M.; Palazuelos, C.; Villanueva, I. Classical versus quantum communication in XOR games. Quantum Inf. Process. 2018, 17, 117. [Google Scholar] [CrossRef]
- Tavakoli, A.; Żukowski, M.; Brukner, Č. Does violation of a Bell inequality always imply quantum advantage in a communication complexity problem? Quantum 2020, 4, 316. [Google Scholar] [CrossRef]
- Buhrman, H.; Czekaj, Ł; Grudka, A.; Horodecki, M.; Horodecki, P.; Markiewicz, M.; Speelman, F.; Strelchuk, S. Quantum communication complexity advantage implies violation of a Bell inequality. Proc. Natl. Acad. Sci. USA 2016, 113, 3191–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laplante, S.; Laurière, M.; Nolin, A.; Roland, J.; Senno, G. Robust Bell inequalities from communication complexity. Quantum 2018, 2, 72. [Google Scholar] [CrossRef] [Green Version]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.A.; Wu, Y.C.; Guo, G.C. Monogamy relation in no-disturbance theories. Phys. Rev. A 2016, 94, 012111. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.; Rohrlich, D. Quantum nonlocality as an axiom. Found. Phys. 1994, 24, 379–385. [Google Scholar] [CrossRef]
- Ramanathan, R.; Soeda, A.; Kurzyński, P.; Kaszlikowski, D. Generalized Monogamy of Contextual Inequalities from the No-Disturbance Principle. Phys. Rev. Lett. 2012, 109, 050404. [Google Scholar] [CrossRef] [Green Version]
- Vorob’ev, N. Markov measures and Markov extensions. Probab. Theory Appl. 1963, 8, 420–429. [Google Scholar] [CrossRef]
- Vorob’ev, N.N. Coalitional games. Probab. Theory Appl. 1967, 12, 289–306. [Google Scholar]
- Fine, A. Hidden Variables, Joint Probability, and the Bell Inequalities. Phys. Rev. Lett. 1982, 48, 291–295. [Google Scholar] [CrossRef]
- Xu, Z.P.; Cabello, A. Necessary and sufficient condition for contextuality from incompatibility. Phys. Rev. A 2019, 99, 020103. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.A.; Cai, G.D.; Wu, Y.C.; Guo, G.C.; Cabello, A. The Exclusivity Principle Determines the Correlation Monogamy. arXiv 2017, arXiv:1707.03250. [Google Scholar]
- Jia, Z.A.; Zhai, R.; Yu, B.C.; Wu, Y.C.; Guo, G.C. Entropic no-disturbance as a physical principle. Phys. Rev. A 2018, 97, 052128. [Google Scholar] [CrossRef] [Green Version]
- Braunstein, S.L.; Caves, C.M. Information-theoretic Bell inequalities. Phys. Rev. Lett. 1988, 61, 662. [Google Scholar] [CrossRef]
- Wehner, S. Tsirelson bounds for generalized Clauser-Horne-Shimony-Holt inequalities. Phys. Rev. A 2006, 73, 022110. [Google Scholar] [CrossRef] [Green Version]
- Cabello, A.; Severini, S.; Winter, A. Graph-Theoretic Approach to Quantum Correlations. Phys. Rev. Lett. 2014, 112, 040401. [Google Scholar] [CrossRef] [Green Version]
- Kushilevitz, E.; Nisan, N. Communication Complexity; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Arora, S.; Barak, B. Computational Complexity: A Modern Approach; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Hromkovič, J. Communication Complexity and Parallel Computing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Buhrman, H.; Cleve, R.; Van Dam, W. Quantum entanglement and communication complexity. SIAM J. Comput. 2001, 30, 1829–1841. [Google Scholar] [CrossRef] [Green Version]
- Toner, B.F.; Bacon, D. Communication cost of simulating bell correlations. Phys. Rev. Lett. 2003, 91, 187904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Dam, W. Implausible consequences of superstrong nonlocality. arXiv 2005, arXiv:quant-ph/0501159. [Google Scholar] [CrossRef]
- Brassard, G.; Buhrman, H.; Linden, N.; Méthot, A.; Tapp, A.; Unger, F. Limit on nonlocality in any world in which communication complexity is not trivial. Phys. Rev. Lett. 2006, 96, 250401. [Google Scholar] [CrossRef] [Green Version]
(1, +1) | (1, −1) | (2, +1) | (2, −1) | (3, +1) | (3, −1) | |
---|---|---|---|---|---|---|
(1, +1) | 1 | −1 | 1 | −1 | − | − |
(1, −1) | −1 | 1 | −1 | 1 | − | − |
(2, +1) | − | − | 1 | −1 | 1 | −1 |
(2, −1) | − | − | −1 | 1 | −1 | 1 |
(3, +1) | 1 | −1 | − | − | −1 | 1 |
(3, −1) | −1 | 1 | − | − | 1 | −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.-A.; Wei, L.; Wu, Y.-C.; Guo, G.-C. Quantum Advantages of Communication Complexity from Bell Nonlocality. Entropy 2021, 23, 744. https://doi.org/10.3390/e23060744
Jia Z-A, Wei L, Wu Y-C, Guo G-C. Quantum Advantages of Communication Complexity from Bell Nonlocality. Entropy. 2021; 23(6):744. https://doi.org/10.3390/e23060744
Chicago/Turabian StyleJia, Zhih-Ahn, Lu Wei, Yu-Chun Wu, and Guang-Can Guo. 2021. "Quantum Advantages of Communication Complexity from Bell Nonlocality" Entropy 23, no. 6: 744. https://doi.org/10.3390/e23060744
APA StyleJia, Z. -A., Wei, L., Wu, Y. -C., & Guo, G. -C. (2021). Quantum Advantages of Communication Complexity from Bell Nonlocality. Entropy, 23(6), 744. https://doi.org/10.3390/e23060744