A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Measurement of the Hand Height and the Safety Zone
3.2. Measurement of the Grip Rotation
3.3. Representation of the Sweeping
3.4. Measurement of Gait Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, E.; Morris, M.R.; Zhong, Y.; White, S.; Bigham, J.P. Visual challenges in the everyday lives of blind people. Conf. Hum. Factors Comput. Syst. Proc. 2013, 2117–2126. [Google Scholar] [CrossRef]
- Real, S.; Araujo, A. Navigation systems for the blind and visually impaired: Past work, challenges, and open problems. Sensors 2019, 19, 3404. [Google Scholar] [CrossRef] [Green Version]
- Aciem, T.M.; Mazzotta, M.J.d. Personal and social autonomy of visually impaired people who were assisted by rehabilitation services. Rev. Bras. Oftalmol. 2013, 72, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Kacorri, H.; Kitani, K.M.; Bigham, J.P.; Asakawa, C. People with visual impairment training personal object recognizers: Feasibility and challenges. Conf. Hum. Factors Comput. Syst. Proc. 2017, 5839–5849. [Google Scholar] [CrossRef]
- Stelmack, J. Quality of life of low-vision patients and outcomes of low-vision rehabilitation. Optom. Vis. Sci. 2001, 78, 335–342. [Google Scholar] [CrossRef]
- Lopera, G.; Aguirre, Á.; Parada, P.; Baquet, J. Manual Tecnico De Servicios De Rehabilitacion Integral Para Personas Ciegas O Con Baja Vision En America Latina Unión Latinoamericana De Ciegos -Ulac. 2010. Available online: http://www.ulacdigital.org/downloads/manual_de_rehabilitacion.pdf (accessed on 20 April 2021).
- American Foundation for the Blind. International Approaches to Rehabilitation Programs for Adults who are Blind or Visually Impaired: Delivery Models. In Services, Challenges, and Trends; American Foundation for the Blind: Arlington, VA, USA, 2016; Available online: https://www.foal.es/es/content/international-approaches-rehabilitation-programs-adults-who-are-blind-or-visually-impaired (accessed on 13 February 2021).
- National Rehabilitation Center for the disabled Japan. Rehabilitation Manual, tactile ground surface indicators for blind persons. 2003. Available online: http://www.rehab.go.jp/english/whoclbc/pdf/E13.pdf (accessed on 1 February 2021).
- Welsh, R.L.; Blasch, B.B. Manpower needs in orientation and mobility. New Outlook Blind 1974, 68, 433–443. [Google Scholar] [CrossRef]
- Blasch, B.; Gallimore, D. Back to the Future: Expanding the Profession—O&M for People with Disabilities. Int. J. Orientat. Mobil. 2013, 6, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, G.A.R.; Ballemans, J.; Kempen, G.I.J.M. Orientation and mobility training for adults with low vision: A new standardized approach. Clin. Rehabil. 2013, 27, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Szabo, J.; Panikkar, R.K. Bridging the gap between physical therapy and orientation and mobility in schools: Using a collaborative team approach for students with visual impairments. J. Vis. Impair. Blind. 2017, 111, 495–510. [Google Scholar] [CrossRef]
- Cuturi, L.F.; Aggius-Vella, E.; Campus, C.; Parmiggiani, A.; Gori, M. From science to technology: Orientation and mobility in blind children and adults. Neurosci. Biobehav. Rev. 2016, 71, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Teskeredžić, A. The significance of orientantion of blind pupuls to ther body in regard to mobility and space orientation. Human 2018, 8, 10–16. [Google Scholar] [CrossRef]
- Ramsey, V.K.; Blasch, B.B.; Kita, A. Effects of Mobility Training on Gait and Balance. J. Vis. Impair. Blind. 2003, 97, 720–726. [Google Scholar] [CrossRef]
- Scott, B.S. Opening Up the World: Early Childhood Orientation and Mobility Intervention as Perceived by Young Children Who are Blind, Their Parents, and Specialist Teachers. 2015. Available online: https://search.proquest.com/docview/1925329675?accountid=14548%0Ahttps://julac.hosted.exlibrisgroup.com/openurl/HKU_ALMA/SERVICES_PAGE??url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&genre=dissertations+%26+theses&sid=ProQ:Australian+Ed (accessed on 13 February 2021).
- Blasch, B.B.; la Grow, S.; Penrod, W. Environmental Rating Scale for Orientation and Mobility. Int. J. Orientat. Mobil. 2008, 1, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Pissaloux, E.; Velázquez, R. Mobility of visually impaired people: Fundamentals and ICT assistive technologies. Mobil. Vis. Impair. People Fundam. ICT Assist. Technol. 2017, 1–652. [Google Scholar] [CrossRef]
- Organización Nacional de Ciegos Españoles. Discapacidad Visual y Autonomía Personal. Enfoque Práctico de la Rehabilitación. 2011. Available online: https://sid.usal.es/idocs/F8/FDO26230/discap_visual.pdf (accessed on 1 February 2021).
- Kim, Y.; Moncada-Torres, A.; Furrer, J.; Riesch, M.; Gassert, R. Quantification of long cane usage characteristics with the constant contact technique. Appl. Ergon. 2016, 55, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Lyu, C.; Liu, Y.; Zhou, W.; Jiang, X.; Li, P.; Chen, H. Hardware implementation of a virtual blind cane on FPGA. In Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR), Okinawa, Japan, 14–18 July 2017; pp. 344–348. [Google Scholar] [CrossRef]
- Dastider, A.; Basak, B.; Safayatullah, M.; Shahnaz, C.; Fattah, S.A. Cost efficient autonomous navigation system (e-cane) for visually impaired human beings. In Proceedings of the 2017 IEEE region 10 humanitarian technology conference (R10-HTC), Dhaka, Bangladesh, 21–23 December 2017; pp. 650–653. [Google Scholar] [CrossRef]
- Meshram, V.V.; Patil, K.; Meshram, V.A.; Shu, F.C. An Astute Assistive Device for Mobility and Object Recognition for Visually Impaired People. IEEE Trans. Human Mach. Syst. 2019, 49, 449–460. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, C. A Visual Positioning System for Indoor Blind Navigation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 9079–9085. [Google Scholar] [CrossRef]
- Bernieri, G.; Faramondi, L.; Pascucci, F. Augmenting white cane reliability using smart glove for visually impaired people. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 8046–8049. [Google Scholar] [CrossRef]
- Islam, M.M.; Sadi, M.S.; Zamli, K.Z.; Ahmed, M.M. Developing Walking Assistants for Visually Impaired People: A Review. IEEE Sens. J. 2019, 19, 2814–2828. [Google Scholar] [CrossRef]
- Biswas, M.; Dhoom, T.; Pathan, R.K.; Chaiti, M.S. Shortest Path Based Trained Indoor Smart Jacket Navigation System for Visually Impaired Person. In Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT), Beijing, China, 14–16 August 2020; pp. 228–235. [Google Scholar] [CrossRef]
- Ferrand, S.; Alouges, F.; Aussal, M. An Augmented Reality Audio Device Helping Blind People Navigation. In International Conference on Computers Helping People with Special Needs; Springer International Publishing: Cham, Switzerland, 2018; Volume 10897, Lecture Notes in Computer Science. [Google Scholar]
- Ferrand, S.; Alouges, F.; Aussal, M. An electronic travel aid device to help blind people playing sport. IEEE Instrum. Meas. Mag. 2020, 23, 14–21. [Google Scholar] [CrossRef]
- Jabbar, M.S.; Hussain, G.; Cho, J. Indoor Positioning System: Improved deep learning approach based on LSTM and multi-stage activity classification. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Korea, 1–3 November 2020; pp. 15–18. [Google Scholar] [CrossRef]
- Guerreiro, J.; Sato, D.; Asakawa, S.; Dong, H.; Kitani, K.M.; Asakawa, C. Cabot: Designing and evaluating an autonomous navigation robot for blind people. In Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, PA, USA, 28–30 October 2019; pp. 68–82. [Google Scholar] [CrossRef] [Green Version]
- Paredes, N.E.G.; Cobo, A.; Martín, C.; Serrano, J.J. Methodology for building virtual reality mobile applications for blind people on advanced visits to unknown interior spaces. In Proceedings of the 14th International Conference on Mobile Learning, Lisbon, Portugal, 14–16 April 2018; pp. 3–14. [Google Scholar]
- Davies, T.C.; Burns, C.M.; Pinder, S.D. Mobility interfaces for the visually impaired: What’s missing? ACM Int. Conf. Proc. Ser. 2007, 254, 41–47. [Google Scholar] [CrossRef]
- Kandalan, R.N.; Namuduri, K. Techniques for Constructing Indoor Navigation Systems for the Visually Impaired: A Review. IEEE Trans. Hum. Mach. Syst. 2020, 50, 492–506. [Google Scholar] [CrossRef]
- Schloerb, D.W.; Lahav, O.; Desloge, J.G.; Srinivasan, M.A. BlindAid: Virtual environment system for self-reliant trip planning and orientation and mobility training. In Proceedings of the 2010 IEEE Haptics Symposium, Waltham, MA, USA, 25–26 March 2010; pp. 363–370. [Google Scholar] [CrossRef]
- Oliveira, J.D.; Campos, M.D.; Bordini, R.H.; Amory, A. Godonnie: A robot programming language to improve orientation and mobility skills in people who are visually impaired. In Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility, Pittsburgh, PA, USA, 28–30 October 2019; pp. 679–681. [Google Scholar] [CrossRef]
- Gong, J.; Ding, Q.; Xu, P.; Zhang, Y.; Zhang, L.; Wang, Q. HeliCoach: An Adaptive Multimodal Orientation and Mobility Training System in a Drone-Based Simulated 3D Audio Space. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J. Comput. Des. Comput. Graph. 2020, 32, 1129–1136. [Google Scholar] [CrossRef]
- Zheng, Y. Miniature Inertial Measurement Unit. Space Microsyst. Micro/Nano Satell. 2018, 233–293. [Google Scholar] [CrossRef]
- Kok, M.; Hol, J.D.; Schön, T.B. Using Inertial Sensors for Position and Orientation Estimation. Found. Trends Signal Process. 2017, 11, 1–153. [Google Scholar] [CrossRef] [Green Version]
- Filippeschi, A.; Schmitz, N.; Miezal, M.; Bleser, G.; Ruffaldi, E.; Stricker, D. Survey of motion tracking methods based on inertial sensors: A focus on upper limb human motion. Sensors 2017, 17, 1257. [Google Scholar] [CrossRef] [Green Version]
- Ligorio, G.; Zanotto, D.; Sabatini, A.M.; Agrawal, S.K. A novel functional calibration method for real-time elbow joint angles estimation with magnetic-inertial sensors. J. Biomech. 2017, 54, 106–110. [Google Scholar] [CrossRef]
- Roetenberg, D.; Luinge, H.; Slycke, P. Xsens MVN: Full 6DOF human motion tracking using miniature inertial sensors. Xsens Motion Technol. BV Tech. Rep. 2009. Available online: http://human.kyst.com.tw/upload/pdfs120702543998066.pdf (accessed on 2 February 2021).
- Zhu, R.; Zhou, Z. A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package. IEEE Trans. Neural Syst. Rehabil. Eng. 2004, 12, 295–302. [Google Scholar] [CrossRef]
- Shaeffer, D.K. MEMS inertial sensors: A tutorial overview. IEEE Commun. Mag. 2013, 51, 100–109. [Google Scholar] [CrossRef]
- Simdiankin, A.; Byshov, N.; Uspensky, I. A method of vehicle positioning using a non-satellite navigation system. Transp. Res. Procedia 2018, 36, 732–740. [Google Scholar] [CrossRef]
- Mahida, P.; Shahrestani, S.; Cheung, H. Deep learning-based positioning of visually impaired people in indoor environments. Sensors 2020, 20, 6238. [Google Scholar] [CrossRef]
- Leiva, K.M.R.; Lara, S.S.; Olmedo, J.J.S. Development of a motion measurement system of a white cane for Visually Impaired People rehabilitation. In Proceedings of the XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica (CASEIB 2020), Virtual Congress, 25–27 November 2020. [Google Scholar]
- Blasch, B.B.; LaGrow, S.J.; de L’Aune, W.R. Three aspects of coverage provided by the long cane: Object, surface, and foot-placement preview. J. Vis. Impair. Blind. 1996, 90, 295–301. [Google Scholar] [CrossRef]
- Sankako, A.N.; Marília, P.; Lucareli, P.R.G.; de Carvalho, S.M.R.; Braccialli, L.M.P. Temporal spatial parameters analysis of the gait in children with vision impairment. Int. J. Orientat. Mobil. 2016, 8, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, V.K.; Blasch, B.B.; Kita, A.; Johnson, B.F. A biomechanical evaluation of visually impaired persons’ gait and lone-cane mechanics. J. Rehabil. Res. Dev. 1999, 36, 323–332. [Google Scholar] [PubMed]
- Emerson, R.W.; Kim, D.S.; Naghshineh, K.; Myers, K.R. Biomechanics of Long Cane Use. J. Vis. Impair. Blind. 2019, 113, 235–247. [Google Scholar] [CrossRef]
- Blasch, B.B.; de L’aune, W.R.; Coombs, F.K. Computer Simulation of Cane Techniques Used by People with Visual Impairments for Accessibility Analysis. In Enabling Environments. Plenum Series in Rehabilitation and Health; Springer: Boston, MA, USA, 1999. [Google Scholar]
- LaGrow, S.J.; Blasch, B.B.; de L’Aune, W. Efficacy of the touch technique for surface and foot-placement preview. J. Vis. Impair. Blind. 1997, 91, 47–52. [Google Scholar] [CrossRef]
- Rampp, A.; Barth, J.; Schülein, S.; Gaßmann, K.G.; Klucken, J.; Eskofier, B.M. Inertial Sensor-Based Stride Parameter Calculation From Gait Sequences in Geriatric Patients. IEEE Trans. Biomed. Eng. 2015, 62, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.H.; Manduchi, R. WeAllWalk. ACM Trans. Access. Comput. 2018, 11, 1–28. [Google Scholar] [CrossRef]
- Xing, H.; Li, J.; Hou, B.; Zhang, Y.; Guo, M. Pedestrian Stride Length Estimation from IMU Measurements and ANN Based Algorithm. J. Sens. 2017, 2017, 6091261. [Google Scholar] [CrossRef] [Green Version]
- Finger, R.P.; Ayton, L.N.; Deverell, L.; O’Hare, F.; McSweeney, S.C.; Luu, C.D.; Fenwick, E.K.; Keeffe, J.E.; Guymer, R.H.; Bentley, S.A. Developing a very low vision orientation and mobility test battery (O&M-VLV). Optom. Vis. Sci. 2016, 93, 1127–1136. [Google Scholar] [PubMed]
Constant Contact Technique (CCT) | Two Points Touch Technique (2PT) | Three Points Touch Technique (3PT) |
---|---|---|
The CCT travel technique consisted of sweeping the long cane on the floor between two points with constant contact with an approximate amplitude of 1 m in order to provide coverage of the walking path. | The 2PT travel technique consisted of sweeping the long cane on the floor between two points taking the cane off the ground and creating an arc of around 5 cm, with an approximate amplitude of 1 m. | The 3PT travel technique consisted of sweeping the long cane on the floor between three points. One point on the left, one on the center and one on the right. Taking the cane off the ground in each point and creating an arc of around 5 cm. |
RV cm | Mean cm | SD cm | %Error | RV cm | Mean cm | SD cm | %Error | |
---|---|---|---|---|---|---|---|---|
Hand Height (HH) | Safety Zone (SZ) | |||||||
S01 | 94.00 | 94.59 | 1.39 | 0.63 | 69.66 | 68.71 | 1.95 | 1.37 |
S02 | 89.00 | 90.17 | 3.17 | 1.31 | 76.00 | 74.34 | 3.77 | 2.18 |
S03 | 95.00 | 94.28 | 3.37 | 0.76 | 68.29 | 69.35 | 5.03 | 1.55 |
S04 | 86.00 | 82.64 | 2.60 | 3.90 | 79.32 | 82.68 | 2.59 | 4.24 |
S05 | 94.00 | 92.56 | 4.66 | 1.53 | 68.66 | 71.04 | 6.11 | 3.47 |
S06 | 86.00 | 82.03 | 3.75 | 4.62 | 79.32 | 83.17 | 3.54 | 4.86 |
S07 | 87.00 | 90.85 | 2.38 | 4.43 | 77.10 | 73.50 | 2.86 | 4.68 |
S08 | 88.00 | 84.13 | 2.51 | 4.40 | 78.23 | 80.21 | 4.35 | 2.54 |
S09 | 82.00 | 81.86 | 6.15 | 0.17 | 83.46 | 83.08 | 6.32 | 0.46 |
S10 | 83.00 | 81.15 | 2.50 | 2.23 | 82.46 | 84.19 | 2.39 | 2.09 |
SD in Degrees | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S01 | S02 | S03 | S04 | S05 | ||||||||||
CCT | 2PT | 3PT | CCT | 2PT | 3PT | CCT | 2PT | 3PT | CCT | 2PT | 3PT | CCT | 2PT | 3PT |
4.55 | 7.21 | 5.34 | 3.44 | 3.05 | 2.82 | 4.34 | 4.43 | 2.88 | 3.72 | 3.12 | 2.13 | 4.45 | 4.28 | 3.01 |
5.68 | 6.47 | 4.97 | 2.76 | 4.12 | 3.84 | 1.88 | 4.45 | 3.06 | 1.93 | 2.11 | 2.03 | 3.67 | 3.49 | 3.01 |
5.31 | 6.29 | 4.25 | 6.14 | 4.93 | 3.09 | 4.84 | 5.18 | 2.9 | 2.66 | 2.12 | 2.22 | 3.43 | 3.42 | 3.28 |
S06 | S07 | S08 | S09 | S10 | ||||||||||
CCT | 2PT | 3PT | CCT | 2PT | 3PT | CCT | 2PT | 3PT | CCT | 2PT | 3PT | CCT | 2PT | 3PT |
3.1 | 3.92 | 3.92 | 8.37 | 5.61 | 3.92 | 5.68 | 3.63 | 3.5 | 7.43 | 7.43 | 6.19 | 2.17 | 2.88 | 2.47 |
3.47 | 3.06 | 3.06 | 7.4 | 6.55 | 4.72 | 6.8 | 4.16 | 2.91 | 8.84 | 7.12 | 4.4 | 6.15 | 2.98 | 2.41 |
2.97 | 2.84 | 2.84 | 7.97 | 6.24 | 4.5 | 6.18 | 5.1 | 3.11 | 6.13 | 7.15 | 5.75 | 4.35 | 3.1 | 2.21 |
Activity | SL m | RSL m | MD cm | SL m | RSL m | MD cm |
---|---|---|---|---|---|---|
S01 | S06 | |||||
W | 0.553 | 0.500 | 7.046 | 0.560 | 0.546 | 2.769 |
CCT | 0.517 | 0.405 | 0.490 | 0.443 | ||
3PT | 0.577 | 0.539 | 0.500 | 0.478 | ||
S02 | S07 | |||||
W | 0.553 | 0.551 | 2.704 | 0.678 | 0.625 | 4.224 |
CCT | 0.590 | 0.601 | 0.731 | 0.716 | ||
3PT | 0.577 | 0.583 | 0.664 | 0.607 | ||
S03 | S08 | |||||
W | 0.447 | 0.432 | 4.937 | 0.567 | 0.502 | 12.370 |
CCT | 0.530 | 0.534 | 0.581 | 0.536 | ||
3PT | 0.483 | 0.542 | 0.572 | 0.540 | ||
S04 | S09 | |||||
W | 0.603 | 0.592 | 3.333 | 0.520 | 0.502 | 3.047 |
CCT | 0.563 | 0.603 | 0.500 | 0.536 | ||
3P | 0.580 | 0.550 | 0.536 | 0.540 | ||
S05 | S10 | |||||
W | 0.637 | 0.498 | 9.800 | 0.538 | 0.505 | 5.152 |
CCT | 0.603 | 0.567 | 0.534 | 0.566 | ||
3P | 0.673 | 0.554 | 0.515 | 0.425 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes Leiva, K.M.; Jaén-Vargas, M.; Cuba, M.Á.; Lara, S.S.; Olmedo, J.J.S. A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors. Entropy 2021, 23, 848. https://doi.org/10.3390/e23070848
Reyes Leiva KM, Jaén-Vargas M, Cuba MÁ, Lara SS, Olmedo JJS. A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors. Entropy. 2021; 23(7):848. https://doi.org/10.3390/e23070848
Chicago/Turabian StyleReyes Leiva, Karla Miriam, Milagros Jaén-Vargas, Miguel Ángel Cuba, Sergio Sánchez Lara, and José Javier Serrano Olmedo. 2021. "A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors" Entropy 23, no. 7: 848. https://doi.org/10.3390/e23070848
APA StyleReyes Leiva, K. M., Jaén-Vargas, M., Cuba, M. Á., Lara, S. S., & Olmedo, J. J. S. (2021). A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors. Entropy, 23(7), 848. https://doi.org/10.3390/e23070848