Event-Triggered Tracking Control for Adaptive Anti-Disturbance Problem in Systems with Multiple Constraints and Unknown Disturbances
Abstract
:1. Introduction
2. Problem Description
3. Event-Triggered PI Controller Design
4. Event-Triggered DOBAC Algorithm Design
5. Analysis and Proof of Multi-Objective Tracking Control Performance
6. Simulation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, W.H.; Ballanceand, D.J.; Gawthrop, P.J. A Nonlinear Disturbance Observer for Robotic Manipulators. IEEE Trans. Ind. Electron. 2000, 47, 932–938. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Wei, X.J.; Karimi, H.R.; Han, J. Anti-Disturbance Control Based on Disturbance Observer for Nonlinear Systems with Bounded Disturbances. J. Frankl. Inst. 2017, 355, 4916–4930. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Dao, H.V.; Ahn, K.K. Adaptive Robust Position Control of Electro-Hydraulic Servo Systems with Large Uncertainties and Disturbances. Appl. Sci. 2022, 12, 794. [Google Scholar] [CrossRef]
- Abdul-Adheem, W.R.; Alkhayyat, A.; Al Mhdawi, A.K.; Bessis, N.; Ibraheem, I.K.; Abdulkareem, A.I.; Humaidi, A.J.; AL-Qassar, A.A. Anti-Disturbance Compensation-Based Nonlinear Control for a Class of MIMO Uncertain Nonlinear Systems. Entropy 2021, 23, 1487. [Google Scholar] [CrossRef]
- Zhou, L.; Tse, K.T.; Hu, G.; Li, Y. Higher Order Dynamic Mode Decomposition of Wind Pressures on Square Buildings. J. Wind. Eng. Ind. Aerodyn. 2021, 211, 104545. [Google Scholar] [CrossRef]
- Nguyen, M.H.; Dao, H.V.; Ahn, K.K. Extended Sliding Mode Observer-Based High-Accuracy Motion Control for Uncertain Electro-Hydraulic Systems. Int. J. Robust Nonlinear Control 2022, 33, 1351–1370. [Google Scholar] [CrossRef]
- Zong, G.D.; Qi, W.H.; Karimi, H.R. L1 Control of Positive Semi-Markov Jump Systems with State Delay. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 7569–7578. [Google Scholar] [CrossRef]
- Zhong, Z.X.; Wang, X.Y.; Lam, H.K. Finite-Time Fuzzy Sliding Mode Control for Nonlinear Descriptor Systems. IEEE/CAA J. Autom. Sin. 2021, 8, 1141–1152. [Google Scholar] [CrossRef]
- Gao, Z. Active Disturbance Rejection Control for Nonlinear Fractional Order Systems. Int. J. Robust Nonlinear Control 2016, 26, 876–892. [Google Scholar] [CrossRef]
- Chen, P.; Luo, Y.; Peng, Y.; Chen, Y. Optimal Fractional-Order Active Disturbance Rejection Controller Design for PMSM Speed Servo System. Entropy 2021, 23, 262. [Google Scholar] [CrossRef]
- Aishwarya, A.; Ujjwala, T.; Vrunda, J. Disturbance Observer Based Speed Control of PMSM Using Fractional Order PI Controller. IEEE/CAA J. Autom. Sin. 2019, 6, 316–326. [Google Scholar]
- Hua, Z.G.; Chen, M. Coordinated Disturbance Observer-Based Flight Control of Fixed-Wing UAV. IEEE Trans. Circuits Syst. II Exp. Briefs 2022, 69, 3545–3549. [Google Scholar]
- Zhang, J.H.; Zheng, W.X.; Xu, H.; Xia, Y.Q. Observer-Based Event-Driven Control for Discrete-Time Systems with Disturbance Rejection. IEEE Trans. Cybern. 2021, 51, 2120–2130. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, Q.; Yang, J.; Narayan, P.; Yue, X. Disturbance-Observer-Based U-Control (DOBUC) for Nonlinear Dynamic Systems. Entropy 2021, 23, 1625. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Li, S.H.; Wang, G.D. Distributed Optimization for Disturbed Second-Order Multi-Agent Systems Based on Active Anti-Disturbance Control. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 2104–2117. [Google Scholar] [CrossRef]
- Yi, Y.; Zheng, W.X.; Sun, C.Y.; Guo, L. DOB Fuzzy Controller Design for Non-Gaussian Stochastic Distribution Systems Using Two-Step Fuzzy Identification. IEEE Trans. Fuzzy Syst. 2016, 24, 401–418. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Ahn, C.K.; Li, H.X. Boundary Anti-Disturbance Control of a Spatially Nonlinear Flexible String System. IEEE Trans. Ind. Electron. 2020, 67, 4846–4856. [Google Scholar] [CrossRef]
- Hu, T.S.; Lin, Z. Control Systems with Actuator Saturation: Analysis and Design; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Tarbouriech, S.; Garcia, G.; Gomes, J.M.; Queinnec, I. Stability and Stabilization of Linear Systems With Saturating Actuators; Springer: London, UK, 2011. [Google Scholar]
- Fridman, E.; Pila, A.; Shaked, U. Regional Stabilization and H∞ Control of Time-Delay Systems with Saturating Actuators. Int. J. Robust Nonlinear Control 2003, 13, 885–907. [Google Scholar] [CrossRef]
- Zhou, B.; Zheng, W.X.; Duan, G.R. An Improved Treatment of Saturation Nonlinearity with Its Application to Control of Systems Subject to Nested Saturation. Automatica 2011, 47, 306–315. [Google Scholar] [CrossRef]
- Wei, Y.L.; Zheng, W.X.; Xu, S.Y. Anti-Disturbance Control for Nonlinear Systems Subject to Input Saturation via Disturbance Observer. Syst. Control Lett. 2015, 85, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.L.; Lin, Z.L. A Complete Characterization of the Maximal Contractively Invariant Ellipsoids of Linear Systems Under Saturated Linear Feedback. IEEE Trans. Autom. Control 2015, 85, 179–185. [Google Scholar] [CrossRef]
- Bai, W.W.; Zhou, Q.; Li, T.S.; Li, H.Y. Adaptive Reinforcement Learning Neural Network Control for Uncertain Nonlinear System with Input Saturation. IEEE Trans. Cybern. 2020, 50, 3433–3443. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Ding, D.R.; Dong, H.L.; Zhang, X.M. Neural-Network-Based Control for Discrete-Time Nonlinear Systems with Input Saturation Under Stochastic Communication Protocol. IEEE/CAA J. Autom. Sin. 2021, 8, 766–778. [Google Scholar] [CrossRef]
- Pan, H.H.; Sun, W.C.; Gao, H.J.; Jing, X.J. Disturbance Observer-Based Adaptive Tracking Control with Actuator Saturation and Its Application. IEEE Trans. Autom. Sci. Eng. 2016, 13, 868–875. [Google Scholar] [CrossRef]
- Li, Z.J.; Zhao, J. Adaptive Consensus of Non-Strict Feedback Witched Multi-Agent Systems with Input Saturations. IEEE/CAA J. Autom. Sin. 2021, 8, 1752–1761. [Google Scholar] [CrossRef]
- Tee, K.P.; Ren, B.B.; Ge, S.S. Control of Nonlinear Systems with Time Varying Output Constraints. Automatica 2011, 47, 2511–2516. [Google Scholar] [CrossRef]
- Ngo, K.B.; Mahony, R.; Jiang, Z.P. Integrator Backstepping Using Barrier Functions for Systems with Multiple State Constraints. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; pp. 8306–8312. [Google Scholar]
- Meng, W.C.; Yang, Q.M.; Si, S.N.; Sun, Y.X. Adaptive Neural Control of a Class of Output-Constrained Non-Affine Systems. IEEE Trans. Cybern. 2016, 46, 85–89. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ma, L.; Liu, L.; Tong, S.C.; Chen, C.L.P. Adaptive Neural Network Learning Controller Design for a Alass of Nonlinear Systems with Time-Varying State Constraints. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 66–75. [Google Scholar] [CrossRef]
- Astrom, K.; Bernhardsson, B. Comparison of Periodic and Event Based Sampling for First-Order Stochastic Systems. In Proceedings of the 14th IFAC World Congress, Beijing, China, 5–9 July 1999; pp. 301–306. [Google Scholar]
- Sahoo, A.; Xu, H.; Jagannathan, S. Neural Network-Based Event Triggered State Feedback Control of Nonlinear Continuous-Time Systems. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 497–509. [Google Scholar] [CrossRef]
- Dolk, V.; Borgers, D.; Heemels, W.P.M.H. Output-Based and Decentralized Dynamic Event-Triggered Control with Guaranteed Lp-Gain Performance and Zeno-Freeness. IEEE Trans. Autom. Control 2017, 62, 34–49. [Google Scholar] [CrossRef]
- Chen, P.; Li, F.Q. A Survey on Recent Advances in Event-Triggered Communication and Control. Inf. Sci. 2018, 457, 113–125. [Google Scholar]
- Wang, W.; Li, Y.M.; Tong, S.C. Neural-Network-Based Adaptive Event-Triggered Consensus Control of Nonstrict-Feedback Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1750–1764. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Yang, G.H. Model-Based Adaptive Event-Triggered Control of Strict-Feedback Nonlinear Systems. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1033–1045. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.G.; Xu, Y.; Pan, Y.J.; Su, S.H.; Tang, Y. Event-Triggered Control for Consensus Problem in Multi-Agent Systems with Quantized Relative State Measurements and External Disturbance. IEEE Trans. Circuits Syst. I Reg. Pap. 2018, 65, 2232–2242. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Sun, J.; Liang, H.J.; Li, H.Y. Event-Triggered Adaptive Tracking Control for Multiagent Systems with Unknown Disturbances. IEEE Trans. Cyber. 2020, 50, 890–901. [Google Scholar] [CrossRef]
- Ren, C.E.; Fu, Q.X.; Zhang, J.G.; Zhao, J.S. · Adaptive Event-triggered Control for Nonlinear Multi-agent Systems with Unknown Control Directions and Actuator Failures. Nonlinear Dyn. 2021, 105, 1657–1672. [Google Scholar] [CrossRef]
- Yang, L.W.; Liu, T.; Hill, D.J. Decentralized Event-Triggered Frequency Control with Guaranteed L∞-Gain for Multi-Area Power Systems. IEEE Control Syst. Lett. 2021, 5, 373–378. [Google Scholar] [CrossRef]
- Deng, Y.J.; Zhang, X.K.; Im, N.K.; Zhang, G.Q.; Zhang, Q. Model-Based Event-Triggered Tracking Control of Underactuated Surface Vessels with Minimum Learning Parameters. IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 4001–4014. [Google Scholar] [CrossRef]
- Yu, W.; Rosen, J. Neural PID Control of Robot Manipulators with Application to an Upper Limb Exoskeleton. IEEE Trans. Cybern. 2013, 43, 673–684. [Google Scholar]
- Han, H.G.; Zhang, L.; Hou, Y.; Qiao, J.F. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 402–415. [Google Scholar] [CrossRef]
- Guo, L.; Chen, W.H. Disturbance Attenuation and Rejection for Systems with Nonlinearity via DOBC Approach. Int. J. Robust Nonlinear Control 2005, 15, 109–125. [Google Scholar] [CrossRef]
- McRuer, D.; Ashkenas, I.; Graham, D. Aircraft Dynamics and Automatic Control; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, H.; Wang, Q.; Yi, Y. Event-Triggered Tracking Control for Adaptive Anti-Disturbance Problem in Systems with Multiple Constraints and Unknown Disturbances. Entropy 2023, 25, 43. https://doi.org/10.3390/e25010043
Shen H, Wang Q, Yi Y. Event-Triggered Tracking Control for Adaptive Anti-Disturbance Problem in Systems with Multiple Constraints and Unknown Disturbances. Entropy. 2023; 25(1):43. https://doi.org/10.3390/e25010043
Chicago/Turabian StyleShen, Hong, Qin Wang, and Yang Yi. 2023. "Event-Triggered Tracking Control for Adaptive Anti-Disturbance Problem in Systems with Multiple Constraints and Unknown Disturbances" Entropy 25, no. 1: 43. https://doi.org/10.3390/e25010043
APA StyleShen, H., Wang, Q., & Yi, Y. (2023). Event-Triggered Tracking Control for Adaptive Anti-Disturbance Problem in Systems with Multiple Constraints and Unknown Disturbances. Entropy, 25(1), 43. https://doi.org/10.3390/e25010043