Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network
Abstract
:1. Introduction
2. Theoretical Background
2.1. Basic Structure of ResNet
2.2. Multi-Scale CNN
3. The Proposed RUL Prediction Method
3.1. Feature Reuse Multi-Scale Attention Residual Network
3.2. RUL Prediction Based on FRMARNet
Algorithm 1: training of FRMARNet |
Input: Training dataset: ; Learning rate: ; Batch size: ; Max-epoch:; Momentum = 0.9. 1: Initialize trainable parameters of FRMARNet 2: for epoch = 1, 2, 3,……, Max-epoch do 3: for step = 1, 2, 3,……, Max-step do 4: //Feature extract 5: Conv+BN+ReLU module; 6: CMP module; 7: FRMA-RBU module; 8: GAP module; 9: //regressor 10: Feed into full connection and obtain ; 11: //Calculate loss and gradient descent 12: Calculate RMSE loss ; 13: Calculate gradient and update parameters, 14: , . 15: end for 16: end for Output: Optimized weights and biases |
4. Experimental Verifications
4.1. Experimental Platform
4.2. Dataset Description
4.3. Evaluation Metrics
4.4. Model Structure and Hyperparameter Configurations
4.5. RUL Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RUL | Remaining useful life |
ML | Machine learning |
DL | Deep learning |
ResNets | Residual networks |
CNNs | Convolutional neural networks |
RNNs | Recurrent neural networks |
FRMARNet | Feature reuse multi-scale attention residual network |
FRMA | Feature reuse multi-scale attention |
SGD | Stochastic gradient descent |
RBU | Residual building unit |
Conv | Convolution |
BN | Batch normalization |
ReLU | Rectified linear unit |
GAP | Global average pooling |
VCNN | Vanilla CNN |
SMCNN | Sum multi-scale CNN |
CMCNN | Concatenation multi-scale CNN |
CMP | Cross-channel maximum pooling |
ECA | Efficient channel attention |
SE | Squeeze-and-excitation |
RMSE | Root mean square error |
MAE | Mean absolute error |
SOTA | State-of-the-art |
LSTM | Long short-term memory |
GRU | Gate recurrent unit |
MSCNN | Multi-scale CNN |
DSRN | Deep separable ResNet |
CNN-BGRU | Bidirectional GRU and CNN |
REA | RNN based on an encoder–decoder framework with an attention mechanism |
FFEM | Feature fusion-based ensemble method |
CoT | Convolutional transformer |
References
- Song, L.; Wang, L.; Wu, J.; Liang, J.; Liu, Z. Integrating physics and data driven cyber-physical system for condition monitoring of critical transmission components in smart production line. Appl. Sci. 2021, 11, 8967. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Z.; Chen, Y.; Jin, Y.; Bai, G. Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis. ISA Trans. 2022, 133, 369–383. [Google Scholar] [CrossRef]
- Cui, H.; Wu, J.; Zhang, B.; Wang, L.; Huang, T. Energy consumption comparison of a novel parallel tracker and its corresponding serial tracker. Math. Probl. Eng. 2021, 2021, 6634989. [Google Scholar] [CrossRef]
- Cui, H.; Wu, J.; Li, Q. A distribution method of driving torque for a novel 3UPS-RR redundant solar tracker. J. Mech. Robot. 2021, 13, 040909. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, Y.; Chen, D.; Liu, F.; Qian, Q. Remaining useful life prediction of bearings by a new reinforced memory GRU network. Adv. Eng. Inform. 2022, 53, 101682. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, J.; Li, T.; Sun, C.; Yan, R.; Chen, X. Challenges and opportunities of AI-enabled monitoring, diagnosis & prognosis: A review. Chin. J. Mech. Eng. 2021, 34, 56. [Google Scholar]
- Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Degradation alignment in remaining useful life prediction using deep cycle-consistent learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5480–5491. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Yan, T. Deep separable convolutional network for remaining useful life prediction of machinery. Mech. Syst. Signal Process. 2019, 134, 106330. [Google Scholar] [CrossRef]
- Li, H.; Zhao, W.; Zhang, Y.; Zio, E. Remaining useful life prediction using multi-scale deep convolutional neural network. Appl. Soft Comput. 2020, 89, 106113. [Google Scholar] [CrossRef]
- Lei, Y.; Li, N.; Guo, L.; Li, N.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Li, H.; Yang, Z. Intelligent fault diagnosis of rolling bearings based on normalized CNN considering data imbalance and variable working conditions. Knowl. Based Syst. 2020, 199, 105971. [Google Scholar] [CrossRef]
- Huang, J.; Cui, X.; Li, C.; Xiao, Z.; Chen, Q. Multivariate time-varying complex signal processing framework and its application in rotating machinery rotor-bearing system. Meas. Sci. Technol. 2022, 33, 125114. [Google Scholar] [CrossRef]
- Ren, J.; Jin, W.; Wu, Y.; Sun, Z.; Li, L. Research on performance degradation estimation of key components of high-speed train bogie based on multi-task learning. Entropy 2023, 25, 696. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Miao, M.; Yu, J.; Zhao, Z. A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions. Reliab. Eng. Syst. Saf. 2022, 219, 108259. [Google Scholar] [CrossRef]
- Liang, J.; Wang, L.; Wu, J.; Liu, Z.; Yu, G. Prediction of spindle rotation error through vibration signal based on Bi-LSTM classification network. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 042033. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Q.; Yu, X.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Applications of unsupervised deep transfer learning to intelligent fault diagnosis: A survey and comparative study. IEEE Trans. Instrum. Meas. 2021, 70, 1–28. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Wu, J.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Trans. 2020, 107, 224–255. [Google Scholar] [CrossRef]
- Xu, X.; Li, X.; Ming, W.; Chen, M. A novel multi-scale CNN and attention mechanism method with multi-sensor signal for remaining useful life prediction. Comput. Ind. Eng. 2022, 169, 108204. [Google Scholar] [CrossRef]
- Ma, J.; Su, H.; Zhao, W.L.; Liu, B. Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning. Complexity 2018, 2018, 3813029. [Google Scholar] [CrossRef]
- Li, X.; Ding, Q.; Sun, J.Q. Remaining useful life estimation in prognostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 2018, 172, 1–11. [Google Scholar] [CrossRef]
- Wen, L.; Dong, Y.; Gao, L. A new ensemble residual convolutional neural network for remaining useful life estimation. Math. Biosci. Eng. 2019, 16, 862–880. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 275, 167–179. [Google Scholar] [CrossRef]
- Ding, Y.; Jia, M. Convolutional Transformer: An enhanced attention mechanism architecture for remaining useful life estimation of bearings. IEEE Trans. Instrum. Meas. 2022, 71, 1–10. [Google Scholar] [CrossRef]
- Liang, H.; Cao, J.; Zhao, X. Multi-scale dynamic adaptive residual network for fault diagnosis. Measurement 2022, 188, 110397. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Ding, Q. Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction. Reliab. Eng. Syst. Saf. 2019, 182, 208–218. [Google Scholar] [CrossRef]
- Du, X.; Jia, W.; Yu, P.; Shi, Y.; Cheng, S. A remaining useful life prediction method based on time–frequency images of the mechanical vibration signals. Measurement 2022, 202, 111782. [Google Scholar] [CrossRef]
- Ge, Y.; Liu, J.J.; Ma, J.X. Remaining useful life prediction using deep multi-scale convolution neural networks. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1043, 032011. [Google Scholar] [CrossRef]
- Wang, R.; Shi, R.; Hu, X.; Shen, C. Remaining useful life prediction of rolling bearings based on multiscale convolutional neural network with integrated dilated convolution blocks. Shock Vib. 2021, 2021, 6616861. [Google Scholar] [CrossRef]
- Deng, F.; Bi, Y.; Liu, Y.; Yang, S. Deep-learning-based remaining useful life prediction based on a multi-scale dilated convolution network. Mathematics 2021, 9, 3035. [Google Scholar] [CrossRef]
- Wang, B.; Lei, Y.; Li, N.; Wang, W. Multiscale convolutional attention network for predicting remaining useful life of machinery. IEEE Trans. Ind. Electron. 2020, 68, 7496–7504. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, N.; Peng, W. Estimation of bearing remaining useful life based on multiscale convolutional neural network. IEEE Trans. Ind. Electron. 2018, 66, 3208–3216. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 770–778. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning PMLR 2015, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Han, Y.; Tang, B.; Deng, L. An enhanced convolutional neural network with enlarged receptive fields for fault diagnosis of planetary gearboxes. Comput. Ind. 2019, 107, 50–58. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; Volume 2018, pp. 7132–7141. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; Volume 2020, pp. 11534–11542. [Google Scholar]
- Gao, S.H.; Cheng, M.M.; Zhao, K.; Zhang, X.Y.; Yang, M.H.; Torr, P. Res2net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016, pp. 2818–2826. [Google Scholar]
- Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 2021, 50, 101406. [Google Scholar] [CrossRef]
- Nectoux, P.; Gouriveau, R.; Medjaher, K.; Ramasso, E.; Chebel-Morello, B.; Zerhouni, N.; Varnier, C. PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In Proceedings of the IEEE International Conference on Prognostics and Health Management, PHM’12 2012, Beijing, China, 23–25 May 2012; pp. 1–8. [Google Scholar]
- Shang, Y.; Tang, X.; Zhao, G.; Jiang, P.; Lin, T.R. A remaining life prediction of rolling element bearings based on a bidirectional gate recurrent unit and convolution neural network. Measurement 2022, 202, 111893. [Google Scholar] [CrossRef]
- Chen, J.; Jing, H.; Chang, Y.; Liu, Q. Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process. Reliab. Eng. Syst. Saf. 2019, 185, 372–382. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, G.; Zhu, Z.; Li, S. A novel deep learning method based on attention mechanism for bearing remaining useful life prediction. Appl. Soft Comput. 2020, 86, 105919. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Zhang, F.; Wu, Z. Feature fusion based ensemble method for remaining useful life prediction of machinery. Appl. Soft Comput. 2022, 129, 109604. [Google Scholar] [CrossRef]
Characteristic | Numerical Value |
---|---|
Outside race diameter | 32 mm |
Inside diameter | 20 mm |
Thickness | 7 mm |
Load ratings static | 2470 N |
Load ratings dynamic | 4000 N |
Maximum speed | 13,000 rpm |
Dataset | Data Size | Accelerated Degradation Lifetime |
---|---|---|
Bearing1_1 | 2803 2560 | 28,030 s |
Bearing1_2 | 871 2560 | 8710 s |
Bearing1_3 | 2375 2560 | 23,750 s |
Bearing1_4 | 1428 2560 | 14,280 s |
Bearing1_5 | 2463 2560 | 24,630 s |
Bearing1_6 | 2448 2560 | 24,480 s |
Bearing1_7 | 2259 2560 | 22,590 s |
Layer Name | Model Parameter | Input Feature Size | Output Feature Size |
---|---|---|---|
Conv+BN+ReLU | C(16 × 64 × 2) | (2560 × 1) | (1252 × 16) |
CMP | P(3 × 2) | (1252 × 16) | (626 × 8) |
FRMA-RBU1 | FR(8 − × 2 × − 64) | (626 × 8) | (313 × 64) |
FRMA-RBU2 | FR(64 − 2 × 2 × − 128) | (313 × 64) | (157 × 128) |
FRMA-RBU3 | FR(128 − 4 × 2 × − 256) | (157 × 128) | (79 × 256) |
FRMA-RBU4 | FR(256 − 8 × 2 × − 512) | (79 × 256) | (40 × 512) |
GAP | G(40 × 1) | (40 × 512) | (1 × 512) |
FC | FC(1) | (1 × 512) | (1) |
Bearing1_1 | 0.142 ± 0.021 | 0.144 ± 0.011 | 0.155 ± 0.027 | 0.155 ± 0.021 | 0.152 ± 0.009 |
Bearing1_2 | 0.111 ± 0.019 | 0.133 ± 0.018 | 0.143 ± 0.010 | 0.142 ± 0.012 | 0.162 ± 0.012 |
Bearing1_3 | 0.056 ± 0.003 | 0.063 ± 0.005 | 0.066 ± 0.007 | 0.065 ± 0.006 | 0.067 ± 0.004 |
Bearing1_4 | 0.081 ± 0.008 | 0.117 ± 0.041 | 0.099 ± 0.024 | 0.090 ± 0.015 | 0.086 ± 0.007 |
Bearing1_5 | 0.134 ± 0.003 | 0.139 ± 0.009 | 0.140 ± 0.007 | 0.139 ± 0.009 | 0.137 ± 0.008 |
Bearing1_6 | 0.118 ± 0.004 | 0.115 ± 0.005 | 0.125 ± 0.008 | 0.124 ± 0.010 | 0.131 ± 0.009 |
Bearing1_7 | 0.159 ± 0.008 | 0.168 ± 0.010 | 0.177 ± 0.013 | 0.165 ± 0.012 | 0.175 ± 0.012 |
Average | 0.114 ± 0.009 | 0.126 ± 0.014 | 0.129 ± 0.014 | 0.126 ± 0.012 | 0.130 ± 0.009 |
Bearing1_1 | 0.118 ± 0.019 | 0.118 ± 0.010 | 0.130 ± 0.025 | 0.130 ± 0.018 | 0.127 ± 0.008 |
Bearing1_2 | 0.096 ± 0.018 | 0.118 ± 0.016 | 0.127 ± 0.009 | 0.123 ± 0.012 | 0.144 ± 0.010 |
Bearing1_3 | 0.046 ± 0.003 | 0.053 ± 0.006 | 0.054 ± 0.008 | 0.056 ± 0.006 | 0.056 ± 0.003 |
Bearing1_4 | 0.065 ± 0.011 | 0.074 ± 0.017 | 0.072 ± 0.013 | 0.066 ± 0.014 | 0.071 ± 0.007 |
Bearing1_5 | 0.080 ± 0.005 | 0.084 ± 0.007 | 0.081 ± 0.003 | 0.085 ± 0.006 | 0.082 ± 0.010 |
Bearing1_6 | 0.099 ± 0.004 | 0.097 ± 0.006 | 0.108 ± 0.007 | 0.104 ± 0.013 | 0.113 ± 0.011 |
Bearing1_7 | 0.109 ± 0.008 | 0.122 ± 0.009 | 0.134 ± 0.017 | 0.115 ± 0.015 | 0.126 ± 0.012 |
Average | 0.088 ± 0.010 | 0.095 ± 0.010 | 0.101 ± 0.012 | 0.097 ± 0.012 | 0.103 ± 0.009 |
FRMARNet | Concatenation | Sum | |
---|---|---|---|
Params | 308.6 k | 855.5 k | 659.2 k |
Bearing1_1 | 0.142 ± 0.021 | 0.155 ± 0.016 | 0.157 ± 0.020 |
Bearing1_2 | 0.111 ± 0.019 | 0.122 ± 0.016 | 0.143 ± 0.032 |
Bearing1_3 | 0.056 ± 0.003 | 0.089 ± 0.011 | 0.072 ± 0.012 |
Bearing1_4 | 0.081 ± 0.008 | 0.098 ± 0.022 | 0.095 ± 0.021 |
Bearing1_5 | 0.134 ± 0.003 | 0.132 ± 0.005 | 0.138 ± 0.007 |
Bearing1_6 | 0.118 ± 0.004 | 0.131 ± 0.008 | 0.127 ± 0.008 |
Bearing1_7 | 0.159 ± 0.008 | 0.157 ± 0.006 | 0.158 ± 0.007 |
Average | 0.114 ± 0.009 | 0.126 ± 0.012 | 0.127 ± 0.015 |
FRMARNet | Concatenation | Sum | |
---|---|---|---|
Bearing1_1 | 0.118 ± 0.019 | 0.130 ± 0.015 | 0.128 ± 0.016 |
Bearing1_2 | 0.096 ± 0.018 | 0.108 ± 0.015 | 0.125± 0.029 |
Bearing1_3 | 0.046 ± 0.003 | 0.077 ± 0.011 | 0.062 ± 0.013 |
Bearing1_4 | 0.065 ± 0.011 | 0.071 ± 0.015 | 0.068 ± 0.018 |
Bearing1_5 | 0.080 ± 0.005 | 0.085 ± 0.006 | 0.080 ± 0.003 |
Bearing1_6 | 0.099 ± 0.004 | 0.108 ± 0.008 | 0.109 ± 0.008 |
Bearing1_7 | 0.109 ± 0.008 | 0.109 ± 0.010 | 0.111 ± 0.009 |
Average | 0.088 ± 0.010 | 0.098 ± 0.011 | 0.098 ± 0.014 |
Network-1 | Network-2 | Network-3 | Network-4 | FRMARNet | |
---|---|---|---|---|---|
Bearing1_1 | 0.183 ± 0.011 | 0.151 ± 0.016 | 0.146 ± 0.015 | 0.153 ± 0.016 | 0.142 ± 0.021 |
Bearing1_2 | 0.171 ± 0.018 | 0.132 ± 0.034 | 0.147 ± 0.014 | 0.156 ± 0.022 | 0.111 ± 0.019 |
Bearing1_3 | 0.077 ± 0.017 | 0.067 ± 0.010 | 0.056 ± 0.008 | 0.065 ± 0.013 | 0.056 ± 0.003 |
Bearing1_4 | 0.140 ± 0.035 | 0.094 ± 0.017 | 0.098 ± 0.020 | 0.126 ± 0.017 | 0.081 ± 0.008 |
Bearing1_5 | 0.135 ± 0.005 | 0.135 ± 0.002 | 0.137 ± 0.008 | 0.134 ± 0.004 | 0.134 ± 0.003 |
Bearing1_6 | 0.129 ± 0.009 | 0.122 ± 0.015 | 0.128 ± 0.008 | 0.125 ± 0.021 | 0.118 ± 0.004 |
Bearing1_7 | 0.175 ± 0.010 | 0.168 ± 0.014 | 0.173 ± 0.008 | 0.170 ± 0.005 | 0.159 ± 0.008 |
Average | 0.144 ± 0.015 | 0.124 ± 0.015 | 0.126 ± 0.011 | 0.133 ± 0.014 | 0.114 ± 0.009 |
Network-1 | Network-2 | Network-3 | Network-4 | FRMARNet | |
---|---|---|---|---|---|
Bearing1_1 | 0.155 ± 0.006 | 0.131 ± 0.017 | 0.120 ± 0.014 | 0.122 ± 0.013 | 0.118 ± 0.019 |
Bearing1_2 | 0.152 ± 0.017 | 0.117 ± 0.031 | 0.130 ± 0.012 | 0.138 ± 0.019 | 0.096 ± 0.018 |
Bearing1_3 | 0.065 ± 0.016 | 0.056 ± 0.011 | 0.046 ± 0.009 | 0.053 ± 0.013 | 0.046 ± 0.003 |
Bearing1_4 | 0.086 ± 0.014 | 0.072 ± 0.021 | 0.071 ± 0.014 | 0.081 ± 0.017 | 0.065 ± 0.011 |
Bearing1_5 | 0.082 ± 0.006 | 0.081 ± 0.004 | 0.080 ± 0.004 | 0.079 ± 0.004 | 0.080 ± 0.005 |
Bearing1_6 | 0.110 ± 0.010 | 0.104 ± 0.016 | 0.109 ± 0.009 | 0.103 ± 0.024 | 0.099 ± 0.004 |
Bearing1_7 | 0.130 ± 0.013 | 0.123 ± 0.014 | 0.126 ± 0.010 | 0.122 ± 0.006 | 0.109 ± 0.008 |
Average | 0.111 ± 0.012 | 0.098 ± 0.016 | 0.097 ± 0.010 | 0.100 ± 0.014 | 0.088 ± 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Wu, J.; Wang, L.; Chen, G.; Shi, Y.; Liu, Z. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network. Entropy 2023, 25, 798. https://doi.org/10.3390/e25050798
Song L, Wu J, Wang L, Chen G, Shi Y, Liu Z. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network. Entropy. 2023; 25(5):798. https://doi.org/10.3390/e25050798
Chicago/Turabian StyleSong, Lin, Jun Wu, Liping Wang, Guo Chen, Yile Shi, and Zhigui Liu. 2023. "Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network" Entropy 25, no. 5: 798. https://doi.org/10.3390/e25050798
APA StyleSong, L., Wu, J., Wang, L., Chen, G., Shi, Y., & Liu, Z. (2023). Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network. Entropy, 25(5), 798. https://doi.org/10.3390/e25050798