Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE
Abstract
:1. Introduction
2. Geology and Tectonics
3. Data and Region Analyzed
4. NESTORE Algorithm
4.1. NESTORE Cluster Identification
4.2. NESTORE Training Procedure
4.3. NESTORE Testing Procedure
5. Results
5.1. Cluster Identification and Completeness Magnitude Assessment in Greece
5.2. NESTOREv1.0 Application to the Current Dataset
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jalayer, F.; Ebrahimian, H. Seismic risk assessment considering cumulative damage due to aftershocks. Earthq. Eng. Struct. Dyn. 2017, 46, 369–389. [Google Scholar] [CrossRef]
- Raghunandan, M.; Liel, A.B.; Luco, N. Aftershock collapse vulnerability assessment of reinforced concrete frame structures. Earthq. Eng. Struct. Dyn. 2015, 44, 419–439. [Google Scholar]
- DeVries, P.M.R.; Viégas, F.; Wattenberg, M.; Meade, B.J. Deep learning of aftershock patterns following large earthquakes. Nature 2018, 560, 632–634. [Google Scholar] [CrossRef]
- Anyfadi, E.-A.; Avgerinou, S.-E.; Michas, G.; Vallianatos, F. Universal Non-Extensive Statistical Physics Temporal Pattern of Major Subduction Zone Aftershock Sequences. Entropy 2022, 24, 1850. [Google Scholar] [CrossRef]
- Papazachos, B.C.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greece, 2003. [Google Scholar]
- Avgerinou, S.-E.; Anyfadi, E.-A.; Michas, G.; Vallianatos, F. A Non-Extensive Statistical Physics View of the Temporal Properties of the Recent Aftershock Sequences of Strong Earthquakes in Greece. Appl. Sci. 2023, 13, 1995. [Google Scholar] [CrossRef]
- Tsapanos, T. Seismicity and Seismic Hazard Assessment in Greece. In Earthquake Monitoring and Seismic Hazard Mitigation in Balkan Countries; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Stiros, S.C. The AD 365 Crete Earthquake and Possible Seismic Clustering During the Fourth to Sixth Centuries AD in the Eastern Mediterranean: A Review of Historical and Archaeological Data. J. Struct. Geol. 2001, 23, 545–562. [Google Scholar] [CrossRef]
- Altinok, Y.; Alpar, B.; Özer, N.; Gazioglu, C. 1881 and 1949 earthquakes at the Chios-Cesme Strait (Aegean Sea) and their relation to tsunamis. Nat. Hazards Earth Syst. Sci. 2005, 5, 717–725. [Google Scholar] [CrossRef]
- Kouskouna, V.; Makropoulos, K. Historical earthquake investigations in Greece. Ann. Geophys. 2004, 47, 723–731. [Google Scholar]
- Stiros, S.C.; Pirazzoli, P.A.; Laborel, J.; Laborel-Deguen, F. The 1953 earthquake in Cephalonia (Western Hellenic Arc): Coastal uplift and halotectonic faulting. Geophys. J. Int. 1994, 117, 834–849. [Google Scholar] [CrossRef]
- Lekidis, V.A.; Karakostas, C.Z.; Dimitriu, P.P.; Margaris, B.N.; Kalogeras, I.; Theodulidis, N. The Aigio (Greece) seismic sequence of June 1995: Seismological, strong motion data and effects of the earthquakes on structures. J. Earthq. Eng. 1999, 3, 349–380. [Google Scholar] [CrossRef]
- Mavroulis, S.; Fountoulis, I.; Lekkas, L. Environmental effects caused by the Andravida (08-06-2008, ML = 6.5, NW Peloponnese, Greece) earthquake. In Proceedings of the 11th IAEG, Auckland, New Zealand, 5–10 September 2010. [Google Scholar]
- Saltogianni, V.; Gianniou, M.; Taymaz, T.; Yolsal-Çevikbilen, S.; Stiros, S. Fault slip source models for the 2014 Mw 6.9 Samothraki-Gökçeada earthquake (North Aegean trough) combining geodetic and seismological observations. J. Geoph. Res. Solid Earth 2015, 120, 8610–8622. [Google Scholar] [CrossRef]
- Vallianatos, F.; Pavlou, K. Scaling properties of the Mw7.0 Samos (Greece), 2020 aftershock sequence. Acta Geophys. 2021, 69, 1067–1084. [Google Scholar] [CrossRef]
- Michas, G.; Pavlou, K.; Avgerinou, S.E.; Anyfadi, E.A.; Vallianatos, F. Aftershock patterns of the 2021 Mw 6.3 Northern Thessaly (Greece) earthquake. J. Seism. 2022, 26, 201–225. [Google Scholar] [CrossRef]
- Vallianatos, F.; Karakonstantis, A.; Michas, G.; Pavlou, K.; Kouli, M.; Sakkas, V. On the patterns and scaling properties of the 2021–2022 Arkalochori earthquake sequence (Central Crete, Greece) Based on Seismological, Geophysical and Satellite Observations. Appl. Sci. 2022, 12, 7716. [Google Scholar] [CrossRef]
- Gentili, S.; Di Giovambattista, R. Forecasting strong subsequent earthquakes in California clusters by machine learning. Phys. Earth Planet. Inter. 2022, 327, 106879. [Google Scholar] [CrossRef]
- Vorobieva, I.A.; Panza, G.F. Prediction of the Occurrence of Related Strong Earthquakes in Italy. Pure Appl. Geophys. 1993, 141, 25–41. [Google Scholar] [CrossRef]
- Shcherbakov, R.; Zhuang, J.; Zoeller, G.; Ogata, Y. Forecasting the magnitude of the largest expected earthquake. Nat. Commun. 2019, 10, 4051. [Google Scholar] [CrossRef]
- Helmstetter, A.; Sornette, D. Båth’s law derived from the Gutenberg-Richter law and from aftershock properties. Geophys. Res. Lett. 2003, 30, 2069. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S.; Vannucci, G. Pseudoprospective evaluation of the foreshock traffic light system in Ridgecrest and implications for aftershock hazard assessment. Seismol. Res. Lett. 2020, 91, 2828–2842. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, Q.; Zúñiga, F.R. Båth’s law and its relation to the tectonic environment: A case study for earthquakes in Mexico. Tectonophysics 2016, 687, 66–77. [Google Scholar] [CrossRef]
- Tahir, M.; Grasso, J.R.; Amorese, D. The largest aftershock: How strong, how far away, how delayed? Geophys. Res. Lett. 2012, 39, L04301. [Google Scholar] [CrossRef]
- Gentili, S.; Di Giovambattista, R. Forecasting strong aftershocks in earthquake clusters from northeastern Italy and western Slovenia. Phys. Earth Planet. Inter. 2020, 303, 106483. [Google Scholar] [CrossRef]
- Gentili, S.; Brondi, P.; Di Giovambattista, R. NESTOREv1.0: A MATLAB Package for Strong Forthcoming Earthquake Forecasting. Seismol. Res. Lett. 2023. [Google Scholar] [CrossRef]
- Gentili, S.; Di Giovambattista, R. Pattern recognition approach to the subsequent event of damaging earthquakes in Italy. Phys. Earth Planet. Inter. 2017, 266, 1–17. [Google Scholar] [CrossRef]
- Papanikolaou, D.I. The geology of Greece; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Frank, A.B.; Frei, R.; Triantaphyllou, M.; Vassilakis, E.; Kristiansen, K.; Frei, K.M. Isotopic range of bioavailable strontium on the Peloponnese peninsula, Greece: A multi-proxy approach. Sci. Total Environ. 2021, 774, 145181. [Google Scholar] [CrossRef]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Mariolakos, I.; Fountoulis, I.; Kranis, H. Geology and tectonics: Sterea Hellas area. Eng. Geol. Environ. Mar. Koukis Tsiambaos Stournaras 2001, 5, 3971–3986. [Google Scholar]
- Alexakis, D.; Astaras, T.; Sarris, A.; Vouzaxakis, K.; Karimali, L. Reconstructing the neolithic landscape of Thessaly through a GIS and geological approach. Reconstr. Anc. Landsc. Veg. 2008. [Google Scholar] [CrossRef]
- Anders, B.; Reischmann, B.T.; Poller, U.; Kostopoulos, D. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: New constraints on the evolution of the Internal Hellenides. J. Geol. Soc. 2005, 162, 857–870. [Google Scholar] [CrossRef]
- Piippo, S.; Sadeghi, M.; Koivisto, E.; Skyttä, P.; Baker, T. Semi-automated geological mapping and target generation from geochemical and magnetic data in Halkidiki region, Greec. Ore Geol. Rev. 2022, 142, 104714. [Google Scholar] [CrossRef]
- Higgins, M.D. Geology of the Greek Islands; University of California Press: Berkeley, CA, USA, 2009; pp. 392–396. [Google Scholar]
- Evelpidou, N. Modelling of erosional processes in the Ionian Islands (Greece), Geomatics. Nat. Hazards Risk 2012, 3, 293–310. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Tzanis, A.; Kosma, C.; Karakonstantis, A.; Valkaniotis, S.; Chailas, S.; Kouskouna, V.; Papadimitriou, P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences 2020, 10, 447. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Kelepertsis, A.; Alexakis, D.; Chrisanthaki, I.; Archonti, D. Environmental research of groundwater in the urban and suburban areas of Attica region, Greece. Env. Geol. 2008, 56, 11–18. [Google Scholar] [CrossRef]
- Tavoularis, N.; Papathanassiou, G.; Ganas, A.; Argyrakis, P. Development of the Landslide Susceptibility Map of Attica Region, Greece, Based on the Method of Rock Engineering System. Land 2021, 10, 148. [Google Scholar] [CrossRef]
- Valkanou, K.; Karymbalis, E.; Papanastassiou, D.; Soldati, M.; Chalkias, C.; Gaki-Papanastassiou, K. Assessment of Neotectonic Landscape Deformation in Evia Island, Greece, Using GIS-Based Multi-Criteria Analysis. ISPRS Int. J. Geo-Inf. 2021, 10, 118. [Google Scholar] [CrossRef]
- Chatzipetros, A.; Pavlides, S.; Foumelis, M.; Sboras, S.; Galanakis, D.; Pikridas, C.; Bitharis, S.; Kremastas, E.; Chatziioannou, A.; Papaioannou, I. The northern Thessaly strong earthquakes of March 3 and 4, 2021, and their neotectonic setting. Bull. Geol. Soc. Greece 2021, 58, 222–255. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Karakonstantis, A.; Papadimitriou, P.; Kaviris, G.; Kouskouna, V.; Voulgaris, N. Seismotectonic analysis of the 2021 Damasi-Tyrnavos (Thessaly, Central Greece) earthquake sequence and implications on the stress field rotations. J. Geodyn. 2022, 150, 101898. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Koukouvelas, I.K.; Lampropoulou, P. UAV, GIS, and Petrographic Analysis for Beachrock Mapping and Preliminary Analysis in the Compressional Geotectonic Setting of Epirus, Western Greece. Minerals 2022, 12, 392. [Google Scholar] [CrossRef]
- Aristotle University of Thessaloniki Seismological Network. Available online: http://geophysics.geo.auth.gr/the_seisnet/WEBSITE_2005/station_index_en.html (accessed on 28 July 2022).
- Bountzis, P.; Papadimitriou, E.; Tsaklidis, G. Identification and Temporal Characteristics of Earthquake Clusters in Selected Areas in Greece. Appl. Sci. 2022, 12, 1908. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Bonatis, P.; Bountzis, P.; Kostoglou, A.; Kourouklas, C.; Karakostas, V. The Intense 2020–2021 Earthquake Swarm in Corinth Gulf: Cluster Analysis and Seismotectonic Implications from High Resolution Microseismicity. Pure Appl. Geophys. 2022, 179, 3121–3155. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; et al. The 2013 earthquake swarm in Helike, Greece: Seismic activity at the root of old normal faults. Geophys. J. Int. 2015, 202, 2044–2073. [Google Scholar] [CrossRef]
- Kaviris, G.; Elias, P.; Kapetanidis, V.; Serpetsidaki, A.; Karakonstantis, A.; Plicka, V.; De Barros, L.; Sokos, E.; Kassaras, I.; Sakkas, V.; et al. The Western Gulf of Corinth (Greece) 2020–2021 Seismic Crisis and Cascading Events: First Results from the Corinth Rift Laboratory Network. Seism. Rec. 2021, 1, 85–95. [Google Scholar] [CrossRef]
- Vassilakis, E.; Kaviris, G.; Kapetanidis, V.; Papageorgiou, E.; Foumelis, M.; Konsolaki, A.; Petrakis, S.; Evangelidis, C.P.; Alexopoulos, J.; Karastathis, V.; et al. The 27 September 2021 Earthquake in Central Crete (Greece)-Detailed Analysis of the Earthquake Sequence and Indications for Contemporary Arc-Parallel Extension to the Hellenic Arc. Appl. Sci. 2022, 12, 2815. [Google Scholar] [CrossRef]
- Becker, D.; Meier, T.; Bohnhoff, M.; Harjes, H.P. Seismicity at the convergent plate boundary offshore Crete, Greece, observed by an amphibian network. J. Seism. 2010, 14, 369–392. [Google Scholar] [CrossRef]
- Sboras, S.; Chatzipetros, A.; Pavlides, S.B. North Aegean Active Fault Pattern and the 24 May 2014, Mw 6.9 Earthquake. In Active Global Seismology: Neotectonics and Earthquake Potential of the Eastern Mediterranean Region, 1st ed.; Çemen, I., Yılmaz, Y., Eds.; American Geophysical Union: Washington, DC, USA, 2017. [Google Scholar]
- Koukouvelas, I.; Aydin, A. Fault structure and related basins of the North Aegean Sea and its surroundings. Tectonics 2002, 21, 10-1–10-17. [Google Scholar] [CrossRef]
- Sboras, S. The Greek Database of Seismogenic Sources: Seismotectonic Implications for North Greece. Ph.D. Thesis, University of Ferrara, Ferrara, Italy, 2011. [Google Scholar]
- Kokinou, E.; Kamperis, E.; Alves, T.M. Structural decoupling in a convergent forearc setting (Southern Crete, Eastern Mediterranean). Geol. Soc. Am. Bull. 2012, 124, 1352–1364. [Google Scholar] [CrossRef]
- Keilis-Borok, V.I.; Kossobokov, V.G. Premonitory activation of earthquake flow: Algorithm M8. Phys. Earth Planet. Inter. 1990, 61, 73–83. [Google Scholar] [CrossRef]
- Keilis-Borok, V.I.; Rotwain, I.M. Diagnosis of Time of Increased Probability of strong earthquakes in different regions of the world: Algorithm CN. Phys. Earth Planet. Inter. 1990, 61, 57–72. [Google Scholar] [CrossRef]
- Vorobieva, I.A. Prediction of a subsequent large earthquake. Phys. Earth Planet. Inter. 1999, 111, 197–206. [Google Scholar] [CrossRef]
- Dascher-Cousineau, K.; Brodsky, E.E.; Lay, T.; Goebel, T. What controls variations in aftershock productivity? J. Geophys. Res. Solid Earth 2020, 125, e2019JB018111. [Google Scholar] [CrossRef]
- Seydoux, L.; Balestriero, R.; Poli, P.; Hoop, M.D.; Campillo, M.; Baraniuk, R. Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning. Nat. Commun. 2020, 11, 3972. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hare, B.M.; Zhou, K.; Stöcker, H.; Scholten, O. Identifying lightning structures via machine learning. Chaos Solitons Fractals 2023, 170, 113346. [Google Scholar] [CrossRef]
- Van Stiphout, T.; Zhuang, J.; Marsan, D. Seismicity Declustering, Community Online Resource for Statistical Analysis. 2012. Available online: http://www.corssa.org (accessed on 28 February 2023). [CrossRef]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence. IEEE Trans. Autom. Control 1997, 42, 1482–1484. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Gentili, S.; Brondi, P.; Rossi, G.; Venturini, E.; Di Giovambattista, R. The Italy-Japan Project “Analysis of Seismic Sequences for Strong Aftershock Forecasting”; Centro di Ricerche Sismologiche-Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (CRS-OGS): Udine, Italy, 2021. [Google Scholar]
- Bailer-Jones, C.A.L.; Smith, K. Combining probabilities. Gaia DPAC. GAIA-C8-TN-MPIA-CBJ-053. 2011. Available online: https://www.mpia.de/3432751/probcomb_TN.pdf (accessed on 11 May 2022).
- Gardner, J.K.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Lolli, B.; Gasperini, P. Aftershocks hazard in Italy Part I: Estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence. J. Seismol. 2003, 7, 235–257. [Google Scholar] [CrossRef]
- Gentili, S.; Bressan, G. The partitioning of radiated energy and the largest aftershock of seismic sequences occurred in the northeastern Italy and western Slovenia. J. Seism. 2008, 12, 343–354. [Google Scholar] [CrossRef]
- Uhrhammer, R. Characteristics of northern and central California seismicity. Earthq. Notes 1986, 57, 21. [Google Scholar]
- Kagan, Y.Y. Seismic moment distribution revisited: I. Statistical results. Geophys. J. Int. 2002, 148, 520–541. [Google Scholar] [CrossRef]
- Knopoff, L. The magnitude distribution of declustered earthquakes in Southern California. Proc. Nat. Acad. Sci. USA 2000, 97, 11880–11884. [Google Scholar] [CrossRef]
- Ganas, A.; Mouzzakiotis, E.; Moshou, A.; Karastathis, V. Left-lateral shear inside the North Gulf of Evia Rift, Central Greece evidenced by relocated earthquake sequences and moment tensor inversion. Tectonophysics 2016, 682, 237–248. [Google Scholar] [CrossRef]
- Wiemer, S. A Software Package to Analyze Seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Gholamy, A.; Kreinovich, V.; Kosheleva, O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. Dep. Tech. Rep. UTEP-CS-18-09 2018, 1209. Available online: https://scholarworks.utep.edu/cs_techrep/1209 (accessed on 11 May 2023).
- Xu, Y.; Goodacre, R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Di Giovambattista, R.; Tyupkin, Y.S. Burst of aftershocks as a manifestation of instability of the earth crust in an area of strong earthquake preparation. In Proceedings of the European Seismological Commission (ESC), XXVIII General Assembly, Genoa, Italy, 1–6 September 2002. [Google Scholar]
- Gutenberg, B.; Richter, C.F. Earthquake magnitude, intensity, energy, and acceleration: (Second paper). Bull. Seismol. Soc. Am. 1956, 46, 105–145. [Google Scholar] [CrossRef]
Training Period | Testing Period | No. of Clusters (Training Set) | No. of A Clusters (Training Set) | No. of Clusters (Test Set) | No. of A Clusters (Test Set) |
---|---|---|---|---|---|
1995–2015 | 2016–2022 | 46 | 6 | 29 | 6 |
Features | Thresholds | ||
---|---|---|---|
Th (6 h) | Th (12 h) | Th (18 h) | |
S | 0.053 | 0.053 | 0.084 |
Z | 0.026 | 0.026 | 0.026 |
SLCum | 0.056 | Inh. | |
QLCum | 2.318 | 2.318 | |
SLCum2 | 0.090 | ||
QLCum2 | 2.79 | ||
Q | 0.012 | 0.012 | 0.013 |
Vm | 0.035 | 0.450 | |
N2 | 2.5 |
Features | Thresholds | |||||
---|---|---|---|---|---|---|
pu (6 h) | po (6 h) | pu (12 h) | po (12 h) | pu (18 h) | po (18 h) | |
S | 0.02 | 0.85 | 0.00 | 0.83 | 0.02 | 0.88 |
Z | 0.06 | 0.64 | 0.03 | 0.62 | 0.02 | 0.58 |
SLCum | 0.02 | 0.82 | 0.02 | 0.78 | ||
QLCum | 0.02 | 0.69 | 0.02 | 0.64 | ||
SLCum2 | 0.02 | 1.00 | ||||
QLCum2 | 0.00 | 0.67 | ||||
Q | 0.02 | 0.92 | 0.02 | 0.90 | 0.02 | 0.88 |
Vm | 0.02 | 0.75 | 0.02 | 0.78 | ||
N2 | 0.02 | 0.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyfadi, E.-A.; Gentili, S.; Brondi, P.; Vallianatos, F. Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE. Entropy 2023, 25, 797. https://doi.org/10.3390/e25050797
Anyfadi E-A, Gentili S, Brondi P, Vallianatos F. Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE. Entropy. 2023; 25(5):797. https://doi.org/10.3390/e25050797
Chicago/Turabian StyleAnyfadi, Eleni-Apostolia, Stefania Gentili, Piero Brondi, and Filippos Vallianatos. 2023. "Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE" Entropy 25, no. 5: 797. https://doi.org/10.3390/e25050797
APA StyleAnyfadi, E. -A., Gentili, S., Brondi, P., & Vallianatos, F. (2023). Forecasting Strong Subsequent Earthquakes in Greece with the Machine Learning Algorithm NESTORE. Entropy, 25(5), 797. https://doi.org/10.3390/e25050797