Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022
Abstract
:1. Introduction
2. Tectonic Cocos Plate Settings
3. Data Sets and Seismic Catalogs
4. Methods
4.1. Gutenberg–Richter Law
4.2. Visibility Graph
4.3. k-Degree Distribution
5. Results
5.1. Gutenberg–Richter Parameters
5.2. k-Degree vs. Magnitude Relationship
5.3. P(k) Distribution
5.4. Correlation Measure
5.5. Three-Dimensional Plot: k–M Slope–b-Value–H-Exponent
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mallard, C.; Coltice, N.; Seton, M.; Müller, R.D.; Tackley, P.J. Subduction controls the distribution and fragmentation of Earth’s tectonic plates. Nature 2016, 535, 140–143. [Google Scholar] [CrossRef]
- Coltice, N.; Husson, L.; Faccenna, C.; Arnould, M. What drives tectonic plates? Sci. Adv. 2019, 5, eaax4295. [Google Scholar] [CrossRef]
- Sigalotti, L.D.G.; Ramírez-Rojas, A.; Vargas, C.A. Tsallis q-Statistics in Seismology. Entropy 2023, 25, 408. [Google Scholar] [CrossRef] [PubMed]
- Mulargia, F.; Bizzarri, A. Anthropogenic Triggering of Large Earthquakes. Sci. Rep. 2014, 4, srep06100. [Google Scholar] [CrossRef]
- Da Silva, S.L.E.F.; Julià, J.; Bezerra, F.H.R. Deviatoric Moment Tensor Solutions from Spectral Amplitudes in Surface Network Recordings: Case Study in São Caetano, Pernambuco, Brazil. Bull. Seism. Soc. Am. 2017, 107, 1495–1511. [Google Scholar] [CrossRef]
- Holliday, J.R.; Rundle, J.B.; Turcotte, D.L.; Klein, W.; Tiampo, K.F.; Donnellan, A. Space-Time Clustering and Correlations of Major Earthquakes. Phys. Rev. Lett. 2006, 97, 238501. [Google Scholar] [CrossRef]
- Kundu, S.; Opris, A.; Yukutake, Y.; Hatano, T. Extracting Correlations in Earthquake Time Series Using Visibility Graph Analysis. Front. Phys. 2021, 9, 656310. [Google Scholar] [CrossRef]
- Albert, R.; Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 2002, 74, 47–97. [Google Scholar] [CrossRef]
- Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Scale-free network of earthquakes. Europhys. Lett. 2004, 65, 581–586. [Google Scholar] [CrossRef]
- Baiesi, M.; Paczuski, M. Scale-free networks of earthquakes and aftershocks. Phys. Rev. E 2004, 69, 066106. [Google Scholar] [CrossRef]
- Newman, M.; Barabási, A.L.; Watts, D.J. The Structure and Dynamics of Networks; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U. Complex networks: Structure and dynamics. Phys. Rep. 2006, 424, 175–308. [Google Scholar] [CrossRef]
- Zhang, J.; Small, M. Complex Network from Pseudoperiodic Time Series: Topology versus Dynamics. Phys. Rev. Lett. 2006, 96, 238701. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, H. Complex network-based time series analysis. Phys. A Stat. Mech. Appl. 2008, 387, 1381–1386. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Ballesteros, F.; Luque, J.; Nuño, J.C. From time series to complex networks: The visibility graph. Proc. Natl. Acad. Sci. USA 2008, 105, 4972–4975. [Google Scholar] [CrossRef]
- Donner, R.V.; Zou, Y.; Donges, J.F.; Marwan, N.; Kurths, J. Recurrence networks—A novel paradigm for nonlinear time series analysis. New J. Phys. 2010, 12, 033025. [Google Scholar] [CrossRef]
- Hope, S.; Kundu, S.; Roy, C.; Manna, S.S.; Hansen, A. Network topology of the desert rose. Front. Phys. 2015, 3, 72. [Google Scholar] [CrossRef]
- Gao, Z.-K.; Small, M.; Kurths, J. Complex network analysis of time series. EPL Europhys. Lett. 2016, 116, 50001. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M. Analysis of seismic sequences by using the method of visibility graph. EPL Europhys. Lett. 2012, 97, 50002. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Y.; Wen, P.P. An Efficient Visibility Graph Similarity Algorithm and Its Application on Sleep Stages Classification. In International Conference on Brain Informatics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 185–195. [Google Scholar]
- Yu, M.; Hillebrand, A.; Gouw, A.A.; Stam, C.J. Horizontal visibility graph transfer entropy (HVG-TE): A novel metric to char-acterize directed connectivity in large-scale brain networks. NeuroImage 2017, 156, 249–264. [Google Scholar] [CrossRef]
- Zhang, R.; Ashuri, B.; Shyr, Y.; Deng, Y. Forecasting Construction Cost Index based on visibility graph: A network approach. Phys. A Stat. Mech. Appl. 2018, 493, 239–252. [Google Scholar] [CrossRef]
- Long, Y. Visibility graph network analysis of gold price time series. Phys. A Stat. Mech. Appl. 2013, 392, 3374–3384. [Google Scholar] [CrossRef]
- Dai, P.-F.; Xiong, X.; Zhou, W.-X. Visibility graph analysis of economy policy uncertainty indices. Phys. A Stat. Mech. Appl. 2019, 531, 121748, ISSN 0378-4371. [Google Scholar] [CrossRef]
- Goncalves, B.A.; Atman, A.P.F. Visibility graph combined with information theory: An estimator of stock market efficiency. J. Netw. Theory Financ. 2017, 3, 1–15. [Google Scholar] [CrossRef]
- Telesca, L.; Thai, A.T.; Lovallo, M.; Cao, D.T. Visibility Graph Analysis of Reservoir-Triggered Seismicity: The Case of Song Tranh 2 Hydropower, Vietnam. Entropy 2022, 24, 1620. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Ramirez-Rojas, A.; Flores-Marquez, L. Investigating the time dynamics of seismicity by using the visi-bility graph approach: Application to seismicity of Mexican subduction zone. Phys. A Stat. Mech. Appl. 2013, 392, 6571–6577. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Pierini, J.O. Visibility graph approach to the analysis of ocean tidal records. Chaos Solitons Fractals 2012, 45, 1086–1091. [Google Scholar] [CrossRef]
- Elsner, J.B.; Jagger, T.H.; Fogarty, E.A. Visibility network of United States hurricanes. Geophys. Res. Lett. 2009, 36, L16702. [Google Scholar] [CrossRef]
- Pierini, J.; Lovallo, M.; Telesca, L. Visibility graph analysis of wind speed records measured in central Argentina. Phys. A Stat. Mech. Appl. 2012, 391, 5041–5048. [Google Scholar] [CrossRef]
- Lacasa, L.; Luque, B.; Luque, J.; Nuño, J.C. The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion. EPL Europhys. Lett. 2009, 86, 30001. [Google Scholar] [CrossRef]
- Khoshnevis, N.; Taborda, R.; Azizzadeh-Roodpish, S.; Telesca, L. Analysis of the 2005–2016 Earthquake Sequence in Northern Iran Using the Visibility Graph Method. Pure Appl. Geophys. 2017, 174, 4003–4019. [Google Scholar] [CrossRef]
- Azizzadeh-Roodpish, S.; Cramer, C.H. Visibility Graph Analysis of Alaska Crustal and Aleutian Subduction Zone Seismicity: An Investigation of the Correlation between b Value and k–M Slope. Pure Appl. Geophys. 2018, 175, 4241–4252. [Google Scholar] [CrossRef]
- Telesca, L.; Chen, C.-C.; Lovallo, M. Investigating the Relationship Between Seismological and Topological Properties of Seismicity in Italy and Taiwan. Pure Appl. Geophys. 2020, 177, 4119–4126. [Google Scholar] [CrossRef]
- Telesca, L.; Lovallo, M.; Ramirez-Rojas, A.; Flores-Marquez, L. Relationship between the Frequency magnitude distri-bution and the visibility graph in the synthetic seismicity generated by a simple stick-slip system with asperities. PLoS ONE 2014, 9, e106233. [Google Scholar] [CrossRef]
- Perez-Oregon, J.; Lovallo, M.; Telesca, L. Visibility graph analysis of synthetic earthquakes generated by the Olami–Feder–Christensen spring-block model. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 093111. [Google Scholar] [CrossRef]
- Pérez-Campos, X.; Kim, Y.; Husker, A.; Davis, P.M.; Clayton, R.W.; Iglesias, A.; Pacheco, J.F.; Singh, S.K.; Manea, V.C.; Gurnis, M. Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. Geophys. Res. Lett. 2008, 35, L18303. [Google Scholar] [CrossRef]
- Carciumaru, D.; Ortega, R.; Castellanos, J.C.; Huesca-Pérez, E. Crustal Characteristics in the Subduction Zone of Mexico: Implication of the Tectonostratigraphic Terranes on Slab Tearing. Seism. Res. Lett. 2020, 91, 1781–1793. [Google Scholar] [CrossRef]
- Manea, V.; Manea, M.; Ferrari, L.; Orozco-Esquivel, T.; Valenzuela, R.; Husker, A.; Kostoglodov, V. A review of the geodynamic evolution of flat slab subduction in Mexico, Peru, and Chile. Tectonophysics 2017, 695 (Suppl. C), 27–52. [Google Scholar] [CrossRef]
- Bandy, W.L.; Hilde, T.W.C.; Yan, C.Y. The Rivera–Cocos plate boundary: Implications for Rivera Cocos relative motion and plate fragmentation. In Cenozoic Tectonics and Volcanism of Mexico; Delgado-Granados, H., Aguirre-Diaz, G., Stock, J.M., Eds.; Special Paper Geological Society of America: Boulder, CO, USA, 2000; Volume 334, pp. 1–28. [Google Scholar]
- Dougherty, S.L.; Clayton, R.W.; Helmberger, D.V. Seismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate. J. Geophys. Res. Solid Earth 2012, 117, B09316. [Google Scholar] [CrossRef]
- Stubailo, I.; Beghein, C.; Davis, P.M. Structure and anisotropy of the Mexico subduction zone based on Rayleigh-wave analysis and implications for the geometry of the Trans-Mexican Volcanic Belt. J. Geophys. Res. Atmos. 2012, 117, B05303. [Google Scholar] [CrossRef]
- Dougherty, S.L.; Clayton, R.W. Seismicity and structure in central Mexico: Evidence for a possible slab tear in the South Cocos plate. J. Geophys. Res. Solid Earth 2014, 119, 3424–3447. [Google Scholar] [CrossRef]
- Castellanos, J.C.; Clayton, R.W.; Pérez-Campos, X. Imaging the Eastern Trans-Mexican Volcanic Belt With Ambient Seismic Noise: Evidence for a Slab Tear. J. Geophys. Res. Solid Earth 2018, 123, 7741–7759. [Google Scholar] [CrossRef]
- Letort, J.; Retailleau, L.; Boue, P.; Radiguet, M.; Gardonio, B.; Cotton, F.; Campillo, M. Lateral variations of the Guerrero–Oaxaca subduction zone (Mexico) derived from weak seismicity (Mb3.5+) detected on a single array at teleseismic distance. Geophys. J. Int. 2018, 213, 1002–1012. [Google Scholar] [CrossRef]
- Ramírez-Herrera, M.T.; Kostoglodov, V.; Urrutia-Fucugauchi, J. Overview of Recent Coastal Tectonic Deformation in the Mexican Subduction Zone. Pure Appl. Geophys. 2011, 168, 1415–1433. [Google Scholar] [CrossRef]
- Singh, S.K.; Reinoso, E.; Arroyo, D.; Ordaz, M.; Cruz-Atienza, V.; Pérez-Campos, X.; Iglesias, A.; Hjörleifsdóttir, V. Deadly Intraslab Mexico Earthquake of 19 September 2017 (Mw 7.1): Ground Motion and Damage Pattern in Mexico City. Seism. Res. Lett. 2018, 89, 2193–2203. [Google Scholar] [CrossRef]
- Golt and Flores, 1997, Real-Time Earthquake Early Warning and Public Policy: A Report on Mexico City’s Sistema de Alerta Sismica. Seismol. Res. Lett. 1997, 68, 727–733. [CrossRef]
- Rosas, V. Estudio de microzonificación sísmica para la ciudad de Uruapan, Michoacán, aplicando el método SPAC. Bachelor’s Thesis, Universidad Michoacana de San Nicolás de Hidalgo, Fac. de Ingeniería Civil, Michoacán, Mexico, 2002. [Google Scholar]
- Mendoza-Ponce, A.; Figueroa-Soto, A.; Soria-Caballero, D.; Garduño-Monroy, V.H. Active faults sources for the Pátzcuaro–Acambay fault system (Mexico): Fractal analysis of slip rates and magnitudes Mw estimated from fault length. Nat. Hazards Earth Syst. Sci. 2018, 18, 3121–3135. [Google Scholar] [CrossRef]
- Ramírez-Rojas, A.; Flores-Márquez, E.L. Nonlinear Statistical Features of the Seismicity in the Subduction Zone of Tehuantepec Isthmus, Southern México. Entropy 2022, 24, 480. [Google Scholar] [CrossRef] [PubMed]
- Müller, R.D.; Seton, M.; Zahirovic, S.; Williams, S.E.; Matthews, K.J.; Wright, N.M.; Shephard, G.E.; Maloney, K.T.; Barnett-Moore, N.; Hosseinpour, M.; et al. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annu. Rev. Earth Planet. Sci. 2016, 44, 107–138. [Google Scholar] [CrossRef]
- Mandujano-Velazquez, J.J.; Keppie, J.D. Middle Miocene Chiapas fold and thrust belt of Mexico: A result of collision of the Tehuantepec Transform/Ridge with the Middle America Trench. Geol. Soc. Lond. Spéc. Publ. 2009, 327, 55–69. [Google Scholar] [CrossRef]
- Keppie, J.D.; Morán-Zenteno, D.J. Tectonic Implications of Alternative Cenozoic Reconstructions for Southern Mexico and the Chortis Block. Int. Geol. Rev. 2005, 47, 473–491. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Seismicity of the Earth and Associated Phenomena, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 1954. [Google Scholar]
- Perez-Oregon, J.; Muñoz-Diosdado, A.; Rudolf-Navarro, A.H.; Guzmán-Sáenz, A.; Angulo-Brown, F. On the possible correlation between the Gutenberg-Richter parameters of the frequency-magnitude relationship. J. Seism. 2018, 22, 1025–1035. [Google Scholar] [CrossRef]
- Flores-Márquez, E.L.; Ramírez-Rojas, A.; Perez-Oregon, J.; Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Natural Time Analysis of Seismicity within the Mexican Flat Slab before the M7.1 Earthquake on 19 September 2017. Entropy 2020, 22, 730. [Google Scholar] [CrossRef] [PubMed]
Region | a | b | Mc | N (M ≥ Mc) |
---|---|---|---|---|
Mi | 5.43 | 0.85 | 3.7 | 4357 |
FS | 5.53 | 0.92 | 3.5 | 3232 |
TCh | 7.83 | 1.12 | 3.6 | 62,571 |
Region | k–M Slope with M ≥ Mc | k–M Slope Entire Catalog |
---|---|---|
Mi | 31.07 | 15.94 |
FS | 29.73 | 9.78 |
TCh | 27.97 | 17.45 |
Region | γ Whole | γ M > Mc Catalog |
---|---|---|
Mi | 2.88 | 2.58 |
FS | 2.4 | 2.08 |
TCh | 2.95 | 3.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Rojas, A.; Flores-Márquez, E.L.; Vargas, C.A. Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022. Entropy 2023, 25, 799. https://doi.org/10.3390/e25050799
Ramírez-Rojas A, Flores-Márquez EL, Vargas CA. Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022. Entropy. 2023; 25(5):799. https://doi.org/10.3390/e25050799
Chicago/Turabian StyleRamírez-Rojas, Alejandro, Elsa Leticia Flores-Márquez, and Carlos Alejandro Vargas. 2023. "Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022" Entropy 25, no. 5: 799. https://doi.org/10.3390/e25050799
APA StyleRamírez-Rojas, A., Flores-Márquez, E. L., & Vargas, C. A. (2023). Visibility Graph Analysis of the Seismic Activity of Three Areas of the Cocos Plate Mexican Subduction Where the Last Three Large Earthquakes (M > 7) Occurred in 2017 and 2022. Entropy, 25(5), 799. https://doi.org/10.3390/e25050799