Uncertainty Management in Assessment of FMEA Expert Based on Negation Information and Belief Entropy
Abstract
:1. Introduction
2. Preliminaries
2.1. Dempster–Shafer Evidence Theory
2.2. Failure Mode and Effects Analysis
2.3. Deng Entropy
2.4. The Negation of BPA
3. Measuring Negation Information in FMEA with the Belief Entropy
4. Application and Discussion
4.1. Application
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Liu, W.; Cabrera, L.V.; Wang, P.; Wei, X.; Zang, T. A novel fault diagnosis method of smart grids based on memory spiking neural P systems considering measurement tampering attacks. Inf. Sci. 2022, 596, 520–536. [Google Scholar] [CrossRef]
- Dempster, A.P. Upper and Lower Probabilities Induced by a Multi-valued Mapping. Ann. Math. Stat. 1967, 38, 325–339. [Google Scholar] [CrossRef]
- Shafer, G. A Mathematical Theory of Evidence; Princeton University Press: Princeton, NJ, USA, 1976. [Google Scholar]
- Wang, T.; Wei, X.; Wang, J.; Huang, T.; Peng, H.; Song, X.; Cabrera, L.V.; Pérez-Jiménez, M.J. A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies. Eng. Appl. Artif. Intell. 2020, 92, 103680. [Google Scholar] [CrossRef]
- Jiao, L.; Yang, H.; Liu, Z.G.; Pan, Q. Interpretable fuzzy clustering using unsupervised fuzzy decision trees. Inf. Sci. 2022, 611, 540–563. [Google Scholar] [CrossRef]
- Mahmood, Y.A.; Ahmadi, A.; Verma, A.K.; Srividya, A.; Kumar, U. Fuzzy fault tree analysis: A review of concept and application. Int. J. Syst. Assur. Eng. Manag. 2013, 4, 19–32. [Google Scholar] [CrossRef]
- Romaniuk, M.; Hryniewicz, O. Estimation of maintenance costs of a pipeline for a U-shaped hazard rate function in the imprecise setting. Eksploat. I Niezawodn. 2020, 22, 352–362. [Google Scholar] [CrossRef]
- Xie, X.P.; Lu, J.; Yue, D.; Ding, D.W. Enhanced fuzzy fault estimation of discrete-time nonlinear systems via a new real-time gain-scheduling mechanism. IEEE Trans. Cybern. 2021, 53, 1607–1617. [Google Scholar] [CrossRef]
- Ilbahar, E.; Kahraman, C.; Cebi, S. Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP. Energy 2022, 239, 121907. [Google Scholar] [CrossRef]
- Pawlak, Z. Rough sets. Int. J. Comput. Inf. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Walczak, B.; Massart, D. Rough sets theory. Chemom. Intell. Lab. Syst. 1999, 47, 1–16. [Google Scholar] [CrossRef]
- Bian, T.; Zheng, H.; Yin, L.; Deng, Y. Failure mode and effects analysis based on D numbers and TOPSIS. Qual. Reliab. Eng. Int. 2018, 34, 501–515. [Google Scholar] [CrossRef]
- Seiti, H.; Hafezalkotob, A.; Herrera-Viedma, E. A novel linguistic approach for multi-granular information fusion and decision-making using risk-based linguistic D numbers. Inf. Sci. 2020, 530, 43–65. [Google Scholar] [CrossRef]
- Seiti, H.; Hafezalkotob, A.; Martinez, L. R-numbers, a new risk modeling associated with fuzzy numbers and its application to decision making. Inf. Sci. 2019, 483, 206–231. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Hafezalkotob, A.; Ghezavati, V.; Abdi, F. An integrated framework for new sustainable waste-to-energy technology selection and risk assessment: An R-TODIM-R-MULTIMOOSRAL approach. J. Clean. Prod. 2022, 335, 130146. [Google Scholar] [CrossRef]
- Su, X.; Li, L.; Qian, H.; Mahadevan, S.; Deng, Y. A new rule to combine dependent bodies of evidence. Soft Comput. 2019, 23, 9793–9799. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, Y.; Zhou, D. Measuring Uncertainty in the Negation Evidence for Multi-Source Information Fusion. Entropy 2022, 24, 1596. [Google Scholar] [CrossRef]
- Fu, C.; Chang, W.; Yang, S. Multiple criteria group decision making based on group satisfaction. Inf. Sci. 2020, 518, 309–329. [Google Scholar] [CrossRef]
- Fan, G.; Zhong, D.; Yan, F.; Yue, P. A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. Expert Syst. Appl. 2016, 44, 289–303. [Google Scholar] [CrossRef]
- Çavdar, T.; Ebrahimpour, N.; Kakız, M.T.; Günay, F.B. Decision-making for the anomalies in IIoTs based on 1D convolutional neural networks and Dempster–Shafer theory (DS-1DCNN). J. Supercomput. 2023, 79, 1683–1704. [Google Scholar] [CrossRef]
- Liu, Z.G.; Liu, Y.; Dezert, J.; Cuzzolin, F. Evidence combination based on credal belief redistribution for pattern classification. IEEE Trans. Fuzzy Syst. 2019, 28, 618–631. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, W.; Geng, J.; Deng, X.; Li, X. Fault diagnosis based on non-negative sparse constrained deep neural networks and Dempster–Shafer theory. IEEE Access 2020, 8, 18182–18195. [Google Scholar] [CrossRef]
- Su, Z.; Wang, F.; Xiao, H.; Yu, H.; Dong, S. A fault diagnosis model based on singular value manifold features, optimized SVMs and multi-sensor information fusion. Meas. Sci. Technol. 2020, 31, 095002. [Google Scholar] [CrossRef]
- Alhijazi, M.; Zeeshan, Q.; Ghasemian, H. Failure Mode and Effect Analysis (FMEA) of Vertical Axis Wind Turbines. In Proceedings of the Industrial Engineering in the Digital Disruption Era: Selected papers from the Global Joint Conference on Industrial Engineering and Its Application Areas, GJCIE 2019, Gazimagusa, North Cyprus, Turkey, 2–3 September 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 51–62. [Google Scholar]
- Demirci, M.; Saka, M.; Gozde, H.; Dursun, M.; Taplamacioglu, M.C. Dempster Shafer Evidence Theory Application for Fault Diagnosis of Power Transformers. In Proceedings of the 2022 9th International Conference on Electrical and Electronics Engineering (ICEEE), Alanya, Turkey, 29–31 March 2022; pp. 40–44. [Google Scholar]
- Kabir, G.; Tesfamariam, S.; Francisque, A.; Sadiq, R. Evaluating risk of water mains failure using a Bayesian belief network model. Eur. J. Oper. Res. 2015, 240, 220–234. [Google Scholar] [CrossRef]
- Albogami, S.; Ariffin, M.; Supeni, E.; Ahmad, K. Development of a hybrid AHP and Dempster-Shafer theory of evidence for project risk assessment problem. J. Proj. Manag. 2022, 7, 77–94. [Google Scholar] [CrossRef]
- Tang, Y.; Tan, S.; Zhou, D. An Improved Failure Mode and Effects Analysis Method Using Belief Jensen–Shannon Divergence and Entropy Measure in the Evidence Theory. Arab. J. Sci. Eng. 2023, 48, 7163–7176. [Google Scholar] [CrossRef]
- Shams, G.; Hatefi, S.M.; Nemati, S. A Dempster-Shafer evidence theory for environmental risk assessment in failure modes and effects analysis of Oil and Gas Exploitation Plant. Sci. Iran. 2022. [Google Scholar] [CrossRef]
- Fabis-Domagala, J.; Domagala, M.; Momeni, H. A Concept of Risk Prioritization in FMEA Analysis for Fluid Power Systems. Energies 2021, 14, 6482. [Google Scholar] [CrossRef]
- Zadeh, L.A. A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination. AI Mag. 1986, 7, 85. [Google Scholar]
- Deng, Y. Uncertainty measure in evidence theory. Sci. China Inf. Sci. 2020, 63, 210201. [Google Scholar] [CrossRef]
- Deng, Y. Deng entropy. Chaos, Solitons Fractals 2016, 91, 549–553. [Google Scholar] [CrossRef]
- Jousselme, A.L.; Liu, C.; Grenier, D.; Bossé, É. Measuring ambiguity in the evidence theory. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2006, 36, 890–903. [Google Scholar] [CrossRef]
- Jiroušek, R.; Shenoy, P.P. A new definition of entropy of belief functions in the Dempster–Shafer theory. Int. J. Approx. Reason. 2018, 92, 49–65. [Google Scholar] [CrossRef]
- Jiroušek, R.; Shenoy, P.P. On properties of a new decomposable entropy of Dempster-Shafer belief functions. Int. J. Approx. Reason. 2020, 119, 260–279. [Google Scholar] [CrossRef]
- Jiang, W. A correlation coefficient for belief functions. Int. J. Approx. Reason. 2018, 103, 94–106. [Google Scholar] [CrossRef]
- Peeters, J.; Basten, R.J.; Tinga, T. Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner. Reliab. Eng. Syst. Saf. 2018, 172, 36–44. [Google Scholar] [CrossRef]
- Sang, A.J.; Tay, K.M.; Lim, C.P.; Nahavandi, S. Application of a Genetic-Fuzzy FMEA to Rainfed Lowland Rice Production in Sarawak: Environmental, Health, and Safety Perspectives. IEEE Access 2018, 6, 74628–74647. [Google Scholar] [CrossRef]
- Batbayar, K.; Takács, M.; Kozlovszky, M. Medical device software risk assessment using FMEA and fuzzy linguistic approach: Case study. In Proceedings of the 2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 12–14 May 2016; pp. 197–202. [Google Scholar]
- Shi, S.; Fei, H.; Xu, X. Application of a FMEA method combining interval 2-tuple linguistic variables and grey relational analysis in preoperative medical service process. IFAC-PapersOnLine 2019, 52, 1242–1247. [Google Scholar] [CrossRef]
- Daneshvar, S.; Yazdi, M.; Adesina, K.A. Fuzzy smart failure modes and effects analysis to improve safety performance of system: Case study of an aircraft landing system. Qual. Reliab. Eng. Int. 2020, 36, 890–909. [Google Scholar] [CrossRef]
- Anes, V.; Morgado, T.; Abreu, A.; Calado, J.; Reis, L. Updating the FMEA Approach with Mitigation Assessment Capabilities. Appl. Sci. 2022, 12, 11407. [Google Scholar] [CrossRef]
- Ramere, M.D.; Laseinde, O.T. Optimization of condition-based maintenance strategy prediction for aging automotive industrial equipment using FMEA. Procedia Comput. Sci. 2021, 180, 229–238. [Google Scholar] [CrossRef]
- Divanoğlu, S.U.; Taş, Ü. Application of 8D methodology: An approach to reduce failures in automotive industry. Eng. Fail. Anal. 2022, 134, 106019. [Google Scholar] [CrossRef]
- Takahashi, M.; Anang, Y.; Watanabe, Y. A safety analysis method for control software in coordination with FMEA and FTA. Information 2021, 12, 79. [Google Scholar] [CrossRef]
- Kadena, E.; Koçak, S.; Takács-György, K.; Keszthelyi, A. FMEA in Smartphones: A Fuzzy Approach. Mathematics 2022, 10, 513. [Google Scholar] [CrossRef]
- Jiao, N.; Guo, J.; Liu, S. Hydro-pneumatic suspension system hybrid reliability modeling considering the temperature influence. IEEE Access 2017, 5, 19144–19153. [Google Scholar] [CrossRef]
- Zhou, D.; Tang, Y.; Jiang, W. A Modified Model of Failure Mode and Effects Analysis Based on Generalized Evidence Theory. Math. Probl. Eng. 2016, 2016, 4512383. [Google Scholar] [CrossRef]
- Liu, H.C. FMEA using uncertainty theories and MCDM methods. In FMEA Using Uncertainty Theories and MCDM Methods; Springer: Berlin/Heidelberg, Germany, 2016; pp. 13–27. [Google Scholar]
- Liu, H.C.; You, J.X.; You, X.Y.; Shan, M.M. A novel approach for failure mode and effects analysis using combination weighting and fuzzy VIKOR method. Appl. Soft Comput. 2015, 28, 579–588. [Google Scholar] [CrossRef]
- Balaraju, J.; Raj, M.G.; Murthy, C.S. Fuzzy-FMEA risk evaluation approach for LHD machine–A case study. J. Sustain. Min. 2019, 18, 257–268. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, W.; Tang, Y. A new method to evaluate risk in failure mode and effects analysis under fuzzy information. Soft Comput. 2018, 22, 4779–4787. [Google Scholar] [CrossRef]
- Yin, L.; Deng, X.; Deng, Y. The negation of a basic probability assignment. IEEE Trans. Fuzzy Syst. 2018, 27, 135–143. [Google Scholar] [CrossRef]
- Guo, J. A risk assessment approach for failure mode and effects analysis based on intuitionistic fuzzy sets and evidence theory. J. Intell. Fuzzy Syst. 2016, 30, 869–881. [Google Scholar] [CrossRef]
- Xiao, N.; Huang, H.Z.; Li, Y.; He, L.; Jin, T. Multiple failure modes analysis and weighted risk priority number evaluation in FMEA. Eng. Fail. Anal. 2011, 18, 1162–1170. [Google Scholar] [CrossRef]
- Smets, P. The application of the matrix calculus to belief functions. Int. J. Approx. Reason. 2002, 31, 1–30. [Google Scholar] [CrossRef]
- Yang, J.; Huang, H.Z.; He, L.P.; Zhu, S.P.; Wen, D. Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty. Eng. Fail. Anal. 2011, 18, 2084–2092. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, D.; Chan, F.T. AMWRPN: Ambiguity measure weighted risk priority number model for failure mode and effects analysis. IEEE Access 2018, 6, 27103–27110. [Google Scholar] [CrossRef]
- Su, X.; Deng, Y.; Mahadevan, S.; Bao, Q. An improved method for risk evaluation in failure modes and effects analysis of aircraft engine rotor blades. Eng. Fail. Anal. 2012, 26, 164–174. [Google Scholar] [CrossRef]
FMs | Risk Factor Assessment Results—Negation BPA | ||||||||
---|---|---|---|---|---|---|---|---|---|
Expert1 | Expert2 | Expert3 | |||||||
O | S | D | O | S | D | O | S | D | |
1 | (3) = 0.6 | (6) = 0.45 | (1) = 0.45 | (3) = 0.1 | (6) = 0.45 | (1) = 0.45 | (3) = 0.2 | (6) = 0.45 | (1) = 0.45 |
(4) = 0.4 | (7) = 0.1 | (2) = 0.1 | (4) = 0.9 | (7) = 0.1 | (2) = 0.1 | (4) = 0.8 | (7) = 0.1 | (2) = 0.1 | |
(8) = 0.45 | (3) = 0.45 | (8) = 0.45 | (3) = 0.45 | (8) = 0.45 | (3) = 0.45 | ||||
2 | (1) = 0.45 | (7) = 0.45 | (3) = 0.45 | (1) = 0.45 | (8) = 0.3 | (3) = 0.45 | (1) = 0.45 | (7) = 0.45 | (3) = 0.45 |
(2) = 0.1 | (8) = 0.1 | (4) = 0.1 | (2) = 0.1 | (9) = 0.7 | (4) = 0.1 | (2) = 0.1 | (8) = 0.1 | (4) = 0.1 | |
(3) = 0.45 | (9) = 0.45 | (5) = 0.45 | (3) = 0.45 | (5) = 0.45 | (3) = 0.45 | (9) = 0.45 | (5) = 0.45 | ||
3 | (0) = 0.45 | (9) = 0.45 | (2) = 0.45 | (0) = 0.45 | (9) = 0.45 | (2) = 0.45 | (0) = 0.45 | (9) = 0.45 | (2) = 0.45 |
(1) = 0.1 | (10) = 0.1 | (3) = 0.1 | (1) = 0.1 | (10) = 0.1 | (3) = 0.1 | (1) = 0.1 | (10) = 0.1 | (3) = 0.1 | |
(2) = 0.45 | (11) = 0.45 | (4) = 0.45 | (2) = 0.45 | (11) = 0.45 | (4) = 0.45 | (2) = 0.45 | (11) = 0.45 | (4) = 0.45 | |
4 | (0) = 0.45 | (6) = 0.2 | (2) = 0.45 | (0) = 0.45 | (5) = 0.45 | (2) = 0.7 | (0) = 0.45 | (5) = 0.45 | (2) = 0.45 |
(1) = 0.1 | (7) = 0.8 | (3) = 0.1 | (1) = 0.1 | (6) = 0.1 | (3) = 0.3 | (1) = 0.1 | (6) = 0.1 | (3) = 0.1 | |
(2) = 0.45 | (4) = 0.45 | (2) = 0.45 | (7) = 0.45 | (2) = 0.45 | (7) = 0.45 | (4) = 0.45 | |||
5 | (0) = 0.45 | (2) = 0.45 | (1) = 0.5 | (0) = 0.45 | (2) = 0.45 | (1) = 0.3 | (0) = 0.45 | (2) = 0.6 | (0) = 0.45 |
(1) = 0.1 | (3) = 0.1 | (2) = 0.5 | (1) = 0.1 | (3) = 0.1 | (2) = 0.7 | (1) = 0.1 | (3) = 0.4 | (1) = 0.1 | |
(2) = 0.45 | (4) = 0.45 | (2) = 0.45 | (4) = 0.45 | (2) = 0.45 | (2) = 0.45 | ||||
6 | (1) = 0.45 | (5) = 0.45 | (4) = 0.45 | (1) = 0.45 | (5) = 0.45 | (4) = 0.45 | (1) = 0.45 | (5) = 0.45 | (4) = 0.45 |
(2) = 0.1 | (6) = 0.1 | (5) = 0.1 | (2) = 0.1 | (6) = 0.1 | (5) = 0.1 | (2) = 0.1 | (6) = 0.1 | (5) = 0.1 | |
(3) = 0.45 | (7) = 0.45 | (6) = 0.45 | (3) = 0.45 | (7) = 0.45 | (6) = 0.45 | (3) = 0.45 | (7) = 0.45 | (6) = 0.45 | |
7 | (0) = 0.45 | (6) = 0.45 | (2) = 0.45 | (0) = 0.45 | (6) = 0.45 | (2) = 0.45 | (0) = 0.45 | (6) = 0.45 | (2) = 0.45 |
(1) = 0.1 | (7) = 0.1 | (3) = 0.1 | (1) = 0.1 | (7) = 0.1 | (3) = 0.1 | (1) = 0.1 | (7) = 0.1 | (3) = 0.1 | |
(2) = 0.45 | (8) = 0.45 | (4) = 0.45 | (2) = 0.45 | (8) = 0.45 | (4) = 0.45 | (2) = 0.45 | (8) = 0.45 | (4) = 0.45 | |
8 | (2) = 0.45 | (5) = 0.4 | (0) = 0.45 | (2) = 0.45 | (5) = 0.2 | (0) = 0.45 | (2) = 0.45 | (5) = 0.2 | (0) = 0.45 |
(3) = 0.1 | (6) = 0.6 | (1) = 0.1 | (3) = 0.1 | (6) = 0.8 | (1) = 0.1 | (3) = 0.1 | (7) = 0.8 | (1) = 0.1 | |
(4) = 0.45 | (2) = 0.45 | (4) = 0.45 | (2) = 0.45 | (4) = 0.45 | (2) = 0.45 | ||||
9 | (1) = 0.9 | (9) = 0.6 | (3) = 0.45 | (1) = 0.75 | (9) = 0.9 | (3) = 0.45 | (1) = 0.8 | (9) = 0.9 | (3) = 0.45 |
(2) = 0.1 | (10) = 0.4 | (4) = 0.1 | (2) = 0.25 | (10) = 0.1 | (4) = 0.1 | (2) = 0.2 | (10) = 0.1 | (4) = 0.1 | |
(5) = 0.45 | (5) = 0.45 | (5) = 0.45 | |||||||
10 | (0) = 0.45 | (9) = 0.45 | (5) = 0.45 | (0) = 0.45 | (9) = 0.45 | (5) = 0.45 | (0) = 0.45 | (9) = 0.45 | (5) = 0.45 |
(1) = 0.1 | (10) = 0.1 | (6) = 0.1 | (1) = 0.1 | (10) = 0.1 | (6) = 0.1 | (1) = 0.1 | (10) = 0.1 | (6) = 0.1 | |
(2) = 0.45 | (11) = 0.45 | (7) = 0.45 | (2) = 0.45 | (11) = 0.45 | (7) = 0.45 | (2) = 0.45 | (11) = 0.45 | (7) = 0.45 | |
11 | (0) = 0.45 | (9) = 0.45 | v(4) = 0.45 | (0) = 0.45 | (9) = 0.45 | (4) = 0.45 | (0) = 0.45 | (9) = 0.45 | (4) = 0.45 |
(1) = 0.1 | (10) = 0.1 | (5) = 0.1 | (1) = 0.1 | (10) = 0.1 | (5) = 0.1 | (1) = 0.1 | (10) = 0.1 | (5) = 0.1 | |
(2) = 0.45 | (11) = 0.45 | (6) = 0.45 | (2) = 0.45 | (11) = 0.45 | (6) = 0.45 | (2) = 0.45 | (11) = 0.45 | (6) = 0.45 | |
12 | (0) = 0.45 | (9) = 0.45 | (5) = 0.6 | (0) = 0.45 | (9) = 0.45 | (4) = 0.8 | (0) = 0.45 | (9) = 0.45 | (5) = 0.7 |
(1) = 0.1 | (10) = 0.1 | (6) = 0.4 | (1) = 0.1 | (10) = 0.1 | (5) = 0.2 | (1) = 0.1 | (10) = 0.1 | (6) = 0.3 | |
(2) = 0.45 | (11) = 0.45 | (2) = 0.45 | (11) = 0.45 | (2) = 0.45 | (11) = 0.45 | ||||
13 | (0) = 0.45 | (9) = 0.45 | (4) = 0.8 | (0) = 0.45 | (9) = 0.45 | (4) = 0.45 | (0) = 0.45 | (9) = 0.45 | (4) = 0.45 |
(1) = 0.1 | (10) = 0.1 | (5) = 0.2 | (1) = 0.1 | (10) = 0.1 | (5) = 0.1 | (1) = 0.1 | (10) = 0.1 | (5) = 0.1 | |
(2) = 0.45 | (11) = 0.45 | (2) = 0.45 | (11) = 0.45 | (6) = 0.45 | (2) = 0.45 | (11) = 0.45 | (6) = 0.45 | ||
14 | (0) = 0.45 | (9) = 0.45 | (5) = 0.45 | (0) = 0.45 | (9) = 0.45 | (6) = 0.2 | (0) = 0.45 | (9) = 0.45 | (5) = 0.45 |
(1) = 0.1 | (10) = 0.1 | (6) = 0.1 | (1) = 0.1 | (10) = 0.1 | (7) = 0.8 | (1) = 0.1 | (10) = 0.1 | (6) = 0.1 | |
(2) = 0.45 | (11) = 0.45 | (7) = 0.45 | (2) = 0.45 | (11) = 0.45 | (2) = 0.45 | (11) = 0.45 | (7) = 0.45 | ||
15 | (1) = 0.45 | (6) = 0.95 | (2) = 0.45 | (1) = 0.45 | (6) = 0.45 | (2) = 0.45 | (1) = 0.45 | (6) = 0.45 | (3) = 0.3 |
(2) = 0.1 | (7) = 0.05 | (3) = 0.1 | (2) = 0.1 | (7) = 0.1 | (3) = 0.1 | (2) = 0.1 | (7) = 0.1 | (4) = 0.7 | |
(3) = 0.45 | (4) = 0.45 | (3) = 0.45 | (8) = 0.45 | (4) = 0.45 | (3) = 0.45 | (8) = 0.45 | |||
16 | (1) = 0.9 | (3) = 0.45 | (2) = 0.45 | (1) = 0.75 | (3) = 0.45 | (2) = 0.45 | (1) = 0.8 | (3) = 0.45 | (2) = 0.8 |
(2) = 0.1 | (4) = 0.1 | (3) = 0.1 | (2) = 0.25 | (4) = 0.1 | (3) = 0.1 | (2) = 0.2 | (4) = 0.1 | (3) = 0.2 | |
(5) = 0.45 | (4) = 0.45 | (5) = 0.45 | (4) = 0.45 | (5) = 0.45 | |||||
17 | (1) = 0.45 | (5) = 0.1 | (2) = 0.45 | (1) = 0.45 | (5) = 0.1 | (2) = 0.45 | (1) = 0.45 | (5) = 0.4 | (2) = 0.45 |
(2) = 0.1 | (6) = 0.9 | (3) = 0.1 | (2) = 0.1 | (6) = 0.9 | (3) = 0.1 | (2) = 0.1 | (6) = 0.6 | (3) = 0.1 | |
(3) = 0.45 | (4) = 0.45 | (3) = 0.45 | (4) = 0.45 | (3) = 0.45 | (4) = 0.45 |
FM1 | Expert1 | Expert2 | Expert3 |
---|---|---|---|
= 0.9710 | = 0.4690 | = 0.7219 | |
= 1.3690 | = 1.3690 | = 1.3690 | |
= 1.3690 | = 1.3690 | = 1.3690 | |
Rating | |||
Component | Compressor Rotor Blades | Turbo Rotor Blades | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Failure mode | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
nRPN | 3.81 | 3.31 | 2.38 | 2.56 | 1.53 | 2.83 | 2.17 | 2.98 | 5.32 | 2.83 | 2.70 | 3.5 | 3.01 | 3.41 | 4.02 | 2.12 | 4.20 |
Rank | 1 | 2 | 6 | 5 | 8 | 4 | 7 | 3 | 1 | 7 | 8 | 4 | 6 | 5 | 3 | 9 | 2 |
FM | nRPN | Rank | AMRPN [59] | Rank | MVRPN [58] | Rank | GERPN [49] | Rank |
---|---|---|---|---|---|---|---|---|
1 | 3.8127 | 1 | 5.1551 | 2 | 42.56 | 3 | 3.491 | 3 |
2 | 3.3062 | 2 | 5.3174 | 1 | 64 | 1 | 3.9994 | 1 |
3 | 2.3753 | 6 | 3.8684 | 4 | 30 | 4 | 3.1069 | 4 |
4 | 2.5564 | 5 | 3.3302 | 6 | 18 | 6 | 2.6205 | 6 |
5 | 1.5252 | 8 | 1.6529 | 8 | 4.17 | 8 | 1.6095 | 8 |
6 | 2.8333 | 4 | 5.0964 | 3 | 60 | 2 | 3.9143 | 2 |
7 | 2.1693 | 7 | 3.3567 | 5 | 21 | 5 | 2.7586 | 5 |
8 | 2.9844 | 3 | 3.2975 | 7 | 15 | 7 | 2.466 | 7 |
9 | 5.3239 | 1 | 8.3797 | 1 | 78.92 | 1 | 4.2881 | 1 |
10 | 2.8333 | 7 | 5.0964 | 5 | 60 | 2 | 3.9143 | 2 |
11 | 2.7049 | 8 | 4.7399 | 8 | 50 | 4 | 3.6836 | 4 |
12 | 3.531 | 4 | 5.0973 | 4 | 50 | 4 | 3.6836 | 4 |
13 | 3.0056 | 6 | 4.9447 | 7 | 50 | 4 | 3.6836 | 4 |
14 | 3.4084 | 5 | 5.4187 | 3 | 60 | 2 | 3.9143 | 2 |
15 | 4.0158 | 3 | 5.9509 | 2 | 42 | 7 | 3.4756 | 7 |
16 | 2.1183 | 9 | 3.756 | 9 | 23.88 | 9 | 2.8794 | 9 |
17 | 4.2019 | 2 | 5.0554 | 6 | 30.05 | 8 | 3.1089 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Tang, Y.; Zhang, L.; Huang, Y. Uncertainty Management in Assessment of FMEA Expert Based on Negation Information and Belief Entropy. Entropy 2023, 25, 800. https://doi.org/10.3390/e25050800
Wu L, Tang Y, Zhang L, Huang Y. Uncertainty Management in Assessment of FMEA Expert Based on Negation Information and Belief Entropy. Entropy. 2023; 25(5):800. https://doi.org/10.3390/e25050800
Chicago/Turabian StyleWu, Lei, Yongchuan Tang, Liuyuan Zhang, and Yubo Huang. 2023. "Uncertainty Management in Assessment of FMEA Expert Based on Negation Information and Belief Entropy" Entropy 25, no. 5: 800. https://doi.org/10.3390/e25050800
APA StyleWu, L., Tang, Y., Zhang, L., & Huang, Y. (2023). Uncertainty Management in Assessment of FMEA Expert Based on Negation Information and Belief Entropy. Entropy, 25(5), 800. https://doi.org/10.3390/e25050800