Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation
Abstract
:Abbreviations and Notations
US-MPTC | Ultrasonic assisted multi-site phase transfer catalysis |
Silent-MPTC | Silent (Non-ultrasonic assisted) multi-site phase transfer catalysis |
MABE | methacrlyic acid butyl ester |
BPMACB | 1,4-bis-(propylmethyleneammounium chloride)benzene |
PPS | potassium persulphate |
MPTC | multi-site phase transfer catalyst |
PTC | Phase transfer catalysis |
µ | Ionic strength |
H+ | Acidic |
Rp | Rate of polymerization |
1. Introduction
2. Results and Discussion
2.1. Proposed Free Radical Polymerization Mechanism for MABE
2.2. Effect of the Ultrasound Frequency on Rate of Polymerization
- (i)
- Ultrasonic irradiation causes cavitation and heating [58]. Once microscopic cavitation bubbles collapses at the surface of the substrate, they generate powerful shock waves that cause effective mixing of the layers. This feature of cavitation phenomena is an important factor is significant in heterogeneous reaction systems compared to homogeneous systems because the effect of cavitation is several hundred times greater in heterogeneous systems than in homogeneous systems. When the ultrasonic waves propagate in a liquid solution, the alternate compression and depression are produced to form cavities [59].
- (ii)
- Further, it was evident that the application of ultrasound has resulted in an intensification of the overall interfacial area where the mass transfer of the reactive species takes place.
2.3. Effect of Organic Solvents
- (i)
- Firstly, transfer of the ionic species in the current investigation, catalytic intermediate [QS2O8]n, from the aqueous phase to the organic phase is greatly enhanced as the dielectric constant value of organic solvent increases.
- (ii)
- Secondly, as organic solvent’s dielectric constant value results in favourable separation of ions, which results in an increase in the rate of propagation.
2.4. Effect of Initiator (PPS) on Rp under Ultrasonic Condition
2.5. Effect of Amount of BPMACB (Catalyst)
- (i)
- (ii)
- Increase in opportunity of collision between initiator and catalyst molecules.
- (iii)
2.6. Rate of Polymerization (Rp) and Methacrlyic Acid Butyl Ester (MABE Monomer) Concentration
2.7. Dependence of Rp on Ionic Strength and H+
2.8. Effect of Temperature on Rp
- (i)
- Number of cavitation bubbles, i.e., reaction loci, increases as temperature increases;
- (ii)
- Increase in collision of the reactants molecules at higher temperature. Consequently, the reaction rate is increased at higher temperature.
2.9. Effect of Ratio of Volume of Water to Volume Organic Solvent (Vw/Vo)
3. Experimental
3.1. Materials and Instruments
3.2. Synthesis of 1,4-bis-(propylmethyleneammounium chloride)benzene, BPMACB
3.3. Sonolytic Kinetics of the Bi-Phase Reaction System
4. Conclusions
Acknowledgments
References
- Burguiere, C.; Pascual, S.; Coutin, A.; Polton, M.; Tardi, B.; Charleux, B.; Matyjaszewski, K.; Vairon, J.P. Amphiphilic block copolymers prepared via controlled radical polymerization as surfactants for emulsion polymerization. Macromol. Symp. 2000, 150, 39–44. [Google Scholar] [CrossRef]
- Braunecker, W.A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146. [Google Scholar] [CrossRef]
- Richard, R.E.; Schwarz, M.; Ranade, S.; Chan, A.K.; Matyjaszewski, K.; Sumerlin, B. Evaluation of acrylate-based block copolymers prepared by atom transfer radical polymerization as matrices for paclitaxel delivery from coronary stents. Biomacromolecules 2005, 6, 3410–3418. [Google Scholar] [CrossRef]
- Arakawa, H.; Aresta, M.; Armor, J.N. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities. Chem. Rev. 2001, 101, 953–996. [Google Scholar] [CrossRef]
- Anastas, P.T.; Wilimson, T.C. Green Chemistry. Designing Chemistry for the Environment, ACS Symposium Series No. 626; American Chemical Society: Washington, DC, USA, 1996. [Google Scholar]
- Zhao, Y.; Tian, J.-S.; Qi, X.-H.; Han, Z.-N.; Zhuang, Y.Y.; He, L.-N. Quaternary ammonium salt-functionalized Chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J. Mol. Catal.AChem. 2007, 271, 284–289. [Google Scholar] [CrossRef]
- Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.; Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. A novel non-phosgene polycarbonate production process using by-product CO2 as starting material. Green Chem. 2003, 5, 497–507. [Google Scholar] [CrossRef]
- Sonavane, S.U.; Chidambaram, M.; Almog, J.; Sasson, Y. Rapid and efficient synthesis of symmetrical alkyl disulfides under phase transfer conditions. Tetrahedron Lett. 2007, 48, 6048–6050. [Google Scholar] [CrossRef]
- Vivekanand, P.A.; Balakrishnan, T. Synthesis and characterization of a novel multi-site phase transfer catalyst and a kinetic study of the intramolecular cyclopentanation of indene. Appl. Catal. A-Gen. 2009, 364, 27–34. [Google Scholar] [CrossRef]
- Makozsa, M.; Jonczyk, A. Phase-transfer alkylation of nitriles: 2-phenylbutyronitrile. Org. Synth. 1976, 55, 91–95. [Google Scholar]
- Barbasiewicz, M.; Marciniak, K.; Fedorynski, M. Phase transfer alkylation of arylacetonitriles revisited. Tetrahedron Lett. 2006, 47, 3871–3874. [Google Scholar] [CrossRef]
- Rieu, J.P.; Boucherle, A.; Cousse, H.; Mouzin, G. Tetrahedron Report Number 205: Methods for the synthesis of antiinflammatory 2-Aryl propionic acids. Tetrahedron 1986, 42, 4095–4131. [Google Scholar] [CrossRef]
- Yang, H.M.; Wu, H.S. Interfacial mechanism and kinetics of phase-transfer catalysis. Catal. Rev. 2003, 45, 463–540. [Google Scholar] [CrossRef]
- Makosza, M. Phase-transfer catalysis. A general green methodology in organic synthesis. Pure Appl. Chem. 2000, 72, 1399–1403. [Google Scholar] [CrossRef]
- Idoux, J.P.; Wysocki, R.; Young, S.; Turcot, J.; Ohlman, C.; Leonard, R. Polymer-supported “Multi-Site” phase transfer catalysts. Synth. Commun. 1983, 13, 139–146. [Google Scholar] [CrossRef]
- Benaglia, M.; Cinquini, M.; Cocci, F.; Tocco, G. Synthesis of a poly(ethylene glycol)-supported tetrakis ammonium salt: A recyclable phase-transfer catalyst of improved catalytic efficiency. Tetrahedron Lett. 2002, 43, 3391–3393. [Google Scholar] [CrossRef]
- Wang, M.L.; Hsieh, Y.M. Kinetic study of dichlorocyclopropanation of 4-Vinyl-1-cyclohexene by a Novel Multisite Phase Transfer Catalyst. J. Mol. Catal. A Chem. 2004, 210, 59–68. [Google Scholar] [CrossRef]
- Ali, H.E.S. Cycloalkylation reactions of fatty amines with α,ω-Dihaloalkanes: Role of Bis-quaternary ammonium salts as phase-transfer catalysts. Catal. Commun. 2007, 8, 855–860. [Google Scholar] [CrossRef]
- Vivekanand, P.A.; Balakrishnan, T. Superior catalytic efficiency of a new multi-site phase transfer catalyst in the C-Alkylation of dimedone—a kinetic study. Catal. Commun. 2009, 10, 1371–1375. [Google Scholar] [CrossRef]
- Esen, I.; Yolacan, C.; Aydogan, F. Long chain dicationic phase transfer catalysts in the condensation reactions of aromatic aldehydes in water under ultrasonic effect. Bull. Korean Chem. Soc. 2010, 31, 2289–2292. [Google Scholar] [CrossRef]
- Vivekanand, P.A.; Wang, M.L. Multi-site Phase Transfer Catalysis: Concepts and Application. In Catalysis: Principles, Types and Applications; Nova Science Publishers: New York, NY, USA, 2012. [Google Scholar]
- Yang, H.M.; Lin, D.W. Third-liquid phase-transfer catalyzed esterification of sodium benzoate with novel dual-site phase-transfer catalyst under ultrasonic irradiation. Catal. Commun. 2011, 14, 101–106. [Google Scholar] [CrossRef]
- Vivekanand, P.A.; Wang, M.L. An efficient recyclable polymer-supported bis-quaternary onium phase-transfer catalyst for the synthesis of dihalocyclopropyl derivatives at low alkaline concentration-comparative kinetic aspects. Catal. Commun. 2012, 22, 6–12. [Google Scholar] [CrossRef]
- Hurduc, N.; Bulacovshichi, V.; Surpateanu, G. Phase transfer catalysis in the polycondensation processes. Polym. Bull. 1993, 30, 69–73. [Google Scholar] [CrossRef]
- Hurduc, N.; Surpateanu, G.; Bulacovshchi, V. Phase transfer catalysis of polycondensation processes—V. internal rotation energies in polyethers based on oxetane and bisphenol-A. Eur. Polym. J. 1992, 28, 1589–1591. [Google Scholar] [CrossRef]
- Jane, Y.S.; Shih, J.S. Crown ether phase-transfer catalysts for polymerization of phenylacetylene. J. Mol. Catal. 1994, 89, 29–40. [Google Scholar]
- Tarng, J.Y.; Shih, J.S. Crown ether as the phase-transfer catalyst for free radical polymerization of hydrophobic vinyl monomers. J. Chin. Chem. Soc. 1994, 41, 81–87. [Google Scholar]
- Aoki, S.; Ohwaki, T.; Uesugi, K.; Tatsuishi, K.; Ozawa, H.; Kayano, M. Preparation of a Novel Type of controlled-release carrier and evaluation of drug release from the matrix tablet and its physical properties. Int. J. Pharm. 1992, 85, 29–38. [Google Scholar] [CrossRef]
- Gramain, P.; Myard, P. Adsorption studies of polyacrylamides in porous media. J.Colloid Interface Sci. 1981, 84, 114–126. [Google Scholar] [CrossRef]
- Choi, K.Y.; Lee, C.Y. Kinetics of bulk free-radical polymerization of methyl methacrylate using potassium peroxydisulfate with 18-Crown-6 as phase-transfer catalyst. Ind. Eng. Chem. Res. 1987, 26, 2079–2086. [Google Scholar] [CrossRef]
- Rasmussen, J.K.; Smith, H.K. Phase-transfer free-radical reactions: The crown ether/potassium peroxydisulfate initiator system. J. Am. Chem. Soc. 1981, 103, 730–731. [Google Scholar] [CrossRef]
- Balakrishnan, T.; Jayachandramani, N. Phase-transfer catalysis: Free-radical polymerization of methyl methacrylate using K2S2O8-Quaternary ammonium salt catalyst system. A kinetic study. Pure Appl. Chem. 1994, A31, 847–857. [Google Scholar]
- Vajjiravel, M.; Umapathy, M.J. Multi-Site phase transfer catalyst assisted radical polymerisation of glycidyl methacrylate using potassium peroxydisulphate as initiator—a kinetic study. J. Polym. Res. 2008, 15, 235–240. [Google Scholar] [CrossRef]
- Mason, T.J. Ultrasound in synthetic organic chemistry. Chem. Soc. Rev. 1997, 26, 443–451. [Google Scholar] [CrossRef]
- Li, C.J. Aqueous barbier-grignard type reaction: Scope, mechanism, and synthetic applications. Tetrahedron 1996, 52, 5643–5668. [Google Scholar] [CrossRef]
- Loupy, A.; Petit, A.; Hamelin, J.; Texier-Boullet, F.; Jacquault, P.; Mathe, D. New solvent free organic synthesis using focused microwaves. Synthesis 1998, 1998, 1213–1234. [Google Scholar] [CrossRef]
- Varma, R.S.; Naicket, K.P.; Kumar, D. Can ultrasound substitute for a phase-transfer catalyst? triphase catalysis and sonochemical acceleration in nucleophilic substitution of alkyl halides and α-Tosyloxyketones: Synthesis of alkyl azides and α-Azidoketones. J. Mol. Catal. A Chem. 1999, 149, 153–160. [Google Scholar] [CrossRef]
- Price, G.J. (Ed.) Current Trends in Sonochemistry; Royal Society of Chemistry: Cambridge, UK, 1993.
- Luche, J.L. (Ed.) Synthetic Organic Sonochemistry; Plenum Press: New York, NY, USA, 1998.
- Luche, J.L. A few questions on the sonochemistry of solution. Ultrason. Sonochem. 1997, 4, 211–215. [Google Scholar] [CrossRef]
- Suslick, K.S.; Docktycz, D. Advances in Sonochemistry; Mason, T.J., Ed.; JAI Press: London, UK, 1990; Volume 1, p. 197. [Google Scholar]
- Loupy, A.; Luche, J.L. Handbook of Phase Transfer Catalysis; Sasson, Y., Neumann, R., Eds.; Blackie Academic and Professional: London, UK, 1997; p. 369. [Google Scholar]
- Luche, J.L. Advances in Sonochemistry; Mason, T.J., Ed.; JAI Press: London, UK, 1993; Volume 3, p. 85. [Google Scholar]
- Pasha, M.A.; Jayashankara, V.P. Reduction of arylnitro compounds to azoarenes and/or arylamines by Al/NaOH in methanol under ultrasonic conditions. Ultrason. Sonochem. 2005, 12, 433–435. [Google Scholar] [CrossRef]
- Disselkamp, R.S.; Hart, T.R.; Williams, A.M.; White, J.F.; Peden, C.H.F. Ultrasound-assisted hydrogenation of cinnamaldehyde. Ultrason. Sonochem. 2005, 12, 319–324. [Google Scholar] [CrossRef]
- Carcenac, Y.; Tordeux, M.; Wakselman, C.; Diter, P. Convenient synthesis of fluorinated alkanes and cycloalkanes by hydrogenation of perfluoroalkylalkenes under ultrasound irradiation. J. Fluor. Chem. 2005, 126, 1347–1355. [Google Scholar] [CrossRef]
- Li, J.T.; Li, X.L.; Li, T.S. Synthesis of oximes under ultrasound irradiation. Ultrason. Sonochem. 2006, 13, 200–202. [Google Scholar] [CrossRef]
- Lianfu, Z.; Zelong, L. Optimization and comparison of Ultrasound/Microwave Assisted Extraction (UMAE) and Ultrasonic Assisted Extraction (UAE) of lycopene from tomatoes. Ultrason. Sonochem. 2008, 15, 731–737. [Google Scholar] [CrossRef]
- Saïd, K.; Moussaoui, Y.; Kammoun, M.; Salem, R.B. Ultrasonic activation of heck type reactions in the presence of Aliquat-336. Ultrason. Sonochem. 2011, 18, 23–27. [Google Scholar] [CrossRef]
- Adewuyi, Y.G. Sonochemistry: Environmental science and engineering applications. Ind. Eng. Chem. Res. 2001, 40, 4681–4715. [Google Scholar] [CrossRef]
- Qiu, G.; Nie, M.; Wang, Q. Ultrasonically initiated emulsion polymerization of styrene in the presence of Fe2+. Ultrason. Sonochem. 2008, 15, 269–273. [Google Scholar] [CrossRef]
- Ragaini, V.; Guaita, C.; Pirola, C. The Beneficial Influence of Ultrasound in the Polymerization of ε-Caprolactam to Polyamide-6 (Nylon 6). Part I: Primary Experimental Results. Ultrason. Sonochem. 2007, 14, 680–688. [Google Scholar] [CrossRef]
- Wang, M.L.; Chen, C.J. Kinetic study of synthesizing 1-(3-Phenylpropyl)pyrrolidine-2,5-dione under solid—liquid phase-transfer catalytic conditions assisted by ultrasonic irradiation. Org. Process Res. Dev. 2010, 14, 737–745. [Google Scholar] [CrossRef]
- Vivekanand, P.A.; Wang, M.L. Sonocatalyzed synthesis of 2-Phenylvaleronitrile under controlled reaction conditions—a kinetic study. Ultrason. Sonochem. 2011, 18, 1241–1248. [Google Scholar] [CrossRef]
- Balakrishanan, T.; Kumar, S.D. Phase-transfer catalysis: Free-radical polymerization of acrylonitrile using potassium peroxomonosulphate– tetrabutyl phosphonium chloride catalyst system: A kinetic study. J. Appl. Polym. Sci. 2000, 76, 1564–1571. [Google Scholar] [CrossRef]
- Mason, T.J.; Cobley, A.J.; Graves, J.E.; Morgan, D. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason. Sonochem. 2011, 18, 226–230. [Google Scholar] [CrossRef]
- Davidson, R.S.; Safdar, A.; Spencer, J.D.; Robinson, B. Applications of ultrasound to organic chemistry. Ultrasonics 1987, 25, 35–39. [Google Scholar] [CrossRef]
- Yachmenev, V.G.; Blanchard, E.J.; Lambert, A.H. Use of ultrasonic energy for intensification of the Bio-preparation of greige cotton. Ultrasonics 2004, 42, 87–91. [Google Scholar] [CrossRef]
- Yang, H.M.; Chiu, C.C. Ultrasound-assisted phase-transfer catalysis: Benzoylation of sodium 4-Acetylphenoxide by dual-site phase-transfer catalyst in a Tri-liquid system. Ultrason. Sonochem. 2011, 18, 363–369. [Google Scholar] [CrossRef]
- Omer, B.A.; Barrow, D.; Wirth, T. Effect of segmented fluid flow, sonication and phase transfer catalysis on biphasic reactions in capillary microreactors. Chem. Eng. J. 2008, 135S, S280–S283. [Google Scholar]
- Aljbour, S.; Yamada, H.; Tagawa, T. Ultrasound-assisted phase transfer catalysis in a capillary microreactor. Chem. Eng. Proc. 2009, 48, 1167–1172. [Google Scholar] [CrossRef]
- Kamachi, M.; Liaw, D.J.; Nozakura, S.I. Solvent effect on radical polymerization of phenyl methacrylate. Polym. J. 1977, 9, 307–316. [Google Scholar] [CrossRef]
- Kamachi, M.; Satoh, J.; Nozakura, S.I. Effect of solvent on radical polymerization of vinyl benzoate. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 1789–1800. [Google Scholar] [CrossRef]
- Umapathy, M.J.; Malaisamy, R.; Mohan, D. Kinetics and mechanism of phase transfer catalyzed free radical polymerization of methyl acrylate. Pure Appl. Chem. 2000, A37, 1437–1445. [Google Scholar]
- Ghosh, N.N.; Mandal, B.M. Mechanism of Phase-Transfer-Agent-Aided free radical polymerization using potassium peroxydisulfate initiator and tetrabutylammonium bromide phase-transfer agent. Macromolecules 1986, 19, 19–25. [Google Scholar] [CrossRef]
- Wang, M.L.; Rajendran, V. Kinetics for dichlorocyclopropanation of 1,7-Octadiene under the influence of ultrasound assisted phase-transfer catalysis conditions. J. Mol. Catal. AChem. 2007, 273, 5–13. [Google Scholar] [CrossRef]
- Wang, M.L.; Hsieh, Y.M.; Chang, R.Y. Kinetic study of Dichlorocyclopropanation of 1,7-Octadiene under phase-transfer catalysis conditions at high alkaline concentration. Ind. Eng. Chem. Res. 2003, 42, 4702–4707. [Google Scholar] [CrossRef]
- Tomoi, M.; Ford, W.T. Mechanisms of polymer-ssupported catalysis. 2. Reaction of benzyl bromide with aqueous sodium cyanide catalyzed by polystyrene-bound onium ions. J. Am. Chem. Soc. 1981, 103, 3828–3832. [Google Scholar] [CrossRef]
- Wu, J.; Lai, J. Phenoxide allylation in a phase-transfer catalytic extraction system. Ind. Eng. Chem. Res. 1995, 34, 1536–1538. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vivekanand, P.A.; Wang, M.-L.; Hsieh, Y.-M. Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation. Molecules 2013, 18, 2419-2437. https://doi.org/10.3390/molecules18022419
Vivekanand PA, Wang M-L, Hsieh Y-M. Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation. Molecules. 2013; 18(2):2419-2437. https://doi.org/10.3390/molecules18022419
Chicago/Turabian StyleVivekanand, Perumberkandgai A., Maw-Ling Wang, and Yu-Ming Hsieh. 2013. "Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation" Molecules 18, no. 2: 2419-2437. https://doi.org/10.3390/molecules18022419
APA StyleVivekanand, P. A., Wang, M. -L., & Hsieh, Y. -M. (2013). Sonolytic and Silent Polymerization of Methacrlyic Acid Butyl Ester Catalyzed by a New Onium Salt with bis-Active Sites in a Biphasic System — A Comparative Investigation. Molecules, 18(2), 2419-2437. https://doi.org/10.3390/molecules18022419