Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin
Abstract
:1. Introduction
2. Results and Discussion
Entry | Enzyme | Yield b (%) |
---|---|---|
1 | Neutral Protease | 9 |
2 | Alkaline protease | 15 |
3 | Papain | 22 |
4 | Acylase I | 10 |
5 | PPL | 29 |
6 | Amano Lipase M | 6 |
7 | Pepsin | 51 |
8 | α-Chymotrypsin | 77 |
9 | BSA | 5 |
10 | Denatured α-chymotrypsin c | 5 |
11 | No enzyme | 4 |
Entry | R | Product | Yield b (%) |
---|---|---|---|
1 | 4-NO2 | 3a | 95 |
2 | 3-NO2 | 3b | 92 |
3 | 2-NO2 | 3c | 90 |
4 | 4-Cl | 3d | 95 |
5 | 2-Cl | 3e | 94 |
6 | 3-Br | 3f | 89 |
7 | 2-Br | 3g | 86 |
8 | 4-OH | 3h | 70 |
9 | 2-OH | 3i | 68 |
10 | 4-CH3 | 3j | 71 |
11 | 4-OCH3 | 3k | 75 |
12 | 4-OH, 3-OCH3 | 3l | 79 |
3. Experimental Section
3.1. General Information
3.2. General Procedure for the Synthesis of Bis(indolyl)methane
3,3'-((4-Nitrophenyl)methylene)bis(1H-indole) (3a)
3,3'-((3-Nitrophenyl)methylene)bis(1H-indole) (3b)
3,3'-((2-Nitrophenyl)methylene)bis(1H-indole) (3c)
3,3'-((4-Chlorophenyl)methylene)bis(1H-indole) (3d)
3,3'-((2-Chlorophenyl)methylene)bis(1H-indole) (3e)
3,3'-((3-Bromophenyl)methylene)bis(1H-indole) (3f)
3,3'-((2-Bromophenyl)methylene)bis(1H-indole) (3g)
3,3'-((4-Hydroxylphenyl)methylene)bis(1H-indole) (3h)
3,3'-((2-Hydroxylphenyl)methylene)bis(1H-indole) (3i)
3,3'-((4-Methylphenyl)methylene)bis(1H-indole) (3j)
3,3'-((4-Methoxylphenyl)methylene)bis(1H-indole) (3k)
4-(Di(1H-indol-3-yl)methyl)-2-methoxyphenol (3l)
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, X.-M.; Hu, S.-Z.; Liu, K.; Guo, Y.; Xu, J.; Shao, S. Oxidized Bis(indolyl)methane: A Simple and Efficient Chromogenic-Sensing Molecule Based on the Proton Transfer Signaling Mode. Org. Lett. 2006, 8, 333–336. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; Espinosa, A.; Tárraga, A.; Molina, P. Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron 2008, 64, 2184–2191. [Google Scholar] [CrossRef]
- Lounasmaa, M.; Tolvanen, A. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit (July 1997 to December 1998). Nat. Prod. Rep. 2000, 17, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Shiri, M.; Zolfigol, M.A.; Kruger, H.G.; Tanbakouchian, Z. Bis- and Trisindolylmethanes (BIMs and TIMs). Chem. Rev. 2010, 110, 2250–2293. [Google Scholar] [CrossRef] [PubMed]
- Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer chemotherapy with indole-3-carbinol, bis(3'-indolyl)methane and synthetic analogs. Cancer Lett. 2008, 269, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.-J.; Wang, S.-Y.; Zhang, Y.; Loh, T.-P. Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 2004, 60, 2051–2055. [Google Scholar] [CrossRef]
- Chakraborti, A.K.; Roy, S.R.; Kumar, D.; Chopra, P. Catalytic application of room temperature ionic liquids: [bmim][MeSO4] as a recyclable catalyst for synthesis of bis(indolyl)methanes. Ion-fishing by MALDI-TOF-TOF MS and MS/MS studies to probe the proposed mechanistic model of catalysis. Green Chem. 2008, 10, 1111–1118. [Google Scholar] [CrossRef]
- Wang, S.Y.; Ji, S.J. Facile Synthesis of Bis(indolyl)methanes catalyzed by Ferric Dodecyl Sulfonate [Fe(DS)3] in Water at Room Temperature. Synth. Commun. 2008, 38, 1291–1298. [Google Scholar] [CrossRef]
- Silveira, C.C.; Mendes, S.R.; Líbero, F.M.; Lenardão, E.J.; Perin, G. Glycerin and CeCl3·7H2O: A new and efficient recyclable medium for the synthesis of bis(indolyl)methanes. Tetrahedron Lett. 2009, 50, 6060–6063. [Google Scholar] [CrossRef]
- Praveen, C.; Wilson Sagayaraj, Y.; Perumal, P.T. Gold(I)-catalyzed sequential cycloisomerization/bis-addition of o-ethynylanilines: An efficient access to bis(indolyl)methanes and di(indolyl)indolin-2-ones. Tetrahedron Lett. 2009, 50, 644–647. [Google Scholar] [CrossRef]
- Naik, M.A.; Sachdev, D.; Dubey, A. Sulfonic acid functionalized mesoporous SBA-15 for one-pot synthesis of substituted aryl-14H-dibenzo xanthenes and bis(indolyl) methanes. Catal. Commun. 2010, 11, 1148–1153. [Google Scholar] [CrossRef]
- Huo, C.; Sun, C.; Wang, C.; Jia, X.; Chang, W. Triphenylphosphine-m-sulfonate/Carbon Tetrabromide as an Efficient and Easily Recoverable Catalyst System for Friedel–Crafts Alkylation of Indoles with Carbonyl Compounds or Acetals. ACS Sustain. Chem. Eng. 2013, 1, 549–553. [Google Scholar] [CrossRef]
- Naidu, K.R.; Khalivulla, S.I.; Rasheed, S.; Fakurazi, S.; Arulselvan, P.; Lasekan, O.; Abas, F. Synthesis of bisindolylmethanes and their cytotoxicity properties. Int. J. Mol. Sci. 2013, 14, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.; Torkian, L.; Saidi, M.R. Highly efficient synthesis of bis(indolyl)methanes in water. J. Mol. Catal. A Chem. 2007, 275, 109–112. [Google Scholar] [CrossRef]
- Karthik, M.; Tripathi, A.; Gupta, N.; Palanichamy, M.; Murugesan, V. Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: Synthesis of bis(indolyl)methanes. Catal. Commun. 2004, 5, 371–375. [Google Scholar] [CrossRef]
- Hikawa, H.; Suzuki, H.; Yokoyama, Y.; Azumaya, I. Mechanistic Studies for Synthesis of Bis(indolyl)methanes: Pd-Catalyzed C–H Activation of Indole–Carboxylic Acids with Benzyl Alcohols in Water. Catalysts 2013, 3, 486–500. [Google Scholar] [CrossRef]
- Hikawa, H.; Yokoyama, Y. Pd-catalyzed C–H activation in water: Synthesis of bis(indolyl)methanes from indoles and benzyl alcohols. RSC Adv. 2013, 3, 1061–1064. [Google Scholar] [CrossRef]
- Cerqueira Pereira, S.; Bussamara, R.; Marin, G.; Lima Camargo Giordano, R.; Dupont, J.; de Campos Giordano, R. Enzymatic synthesis of amoxicillin by penicillin G acylase in the presence of ionic liquids. Green Chem. 2012, 14, 3146–3156. [Google Scholar]
- Kloosterman, W.M.J.; Roest, S.; Priatna, S.R.; Stavila, E.; Loos, K. Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds. Green Chem. 2014, 16, 1837–1846. [Google Scholar] [CrossRef]
- Paggiola, G.; Hunt, A.J.; McElroy, C.R.; Sherwood, J.; Clark, J.H. Biocatalysis in bio-derived solvents: an improved approach for medium optimisation. Green Chem. 2014, 16, 2107–2110. [Google Scholar] [CrossRef]
- Humble, M.S.; Berglund, P. Biocatalytic Promiscuity. Eur. J. Org. Chem. 2011, 19, 3391–3401. [Google Scholar] [CrossRef]
- Busto, E.; Gotor-Fernandez, V.; Gotor, V. Hydrolases: Catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem. Soc. Rev. 2010, 39, 4504–4523. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-M.; Zhang, F.; Liu, B.-K.; Wu, Q.; Lin, X.-F. Promiscuous zinc-dependent acylase-mediated carbon-carbon bond formation in organic media. Chem. Commun. 2007, 2078–2080. [Google Scholar]
- Wu, W.-B.; Xu, J.-M.; Wu, Q.; Lv, D.-S.; Lin, X.-F. Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media. Adv. Synth. Catal. 2006, 348, 487–492. [Google Scholar] [CrossRef]
- Lou, F.-W.; Liu, B.-K.; Wu, Q.; Lv, D.-S.; Lin, X.-F. Candida antarcticaLipase B (CAL-B)-Catalyzed Carbon-Sulfur Bond Addition and Controllable Selectivity in Organic Media. Adv. Synth. Catal. 2008, 350, 1959–1962. [Google Scholar] [CrossRef]
- Xiang, Z.; Liu, Z.; Chen, X.; Wu, Q.; Lin, X. Biocatalysts for cascade reaction: Porcine pancreas lipase (PPL)-catalyzed synthesis of bis(indolyl)alkanes. Amino Acids 2013, 45, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-H.; He, Y.-H.; Guan, Z. Protease-catalyzed direct aldol reaction. Catal. Commun. 2011, 12, 580–582. [Google Scholar] [CrossRef]
- Kumar, A.; Venkatesu, P. Overview of the Stability of α-Chymotrypsin in Different Solvent Media. Chem. Rev. 2012, 112, 4283–4307. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, R. The interaction of α-chymotrypsin with one persistent organic pollutant (dicofol): Spectroscope and molecular modeling identification. Food Chem. Toxicol. 2012, 50, 3298–3305. [Google Scholar] [CrossRef] [PubMed]
- Blow, D.M.; Birktoft, J.J.; Hartley, B.S. Role of a Buried Acid Group in the Mechanism of Action of Chymotrypsin. Nature 1969, 221, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Martichonok, V.; Jones, J.B. Probing the Specificity of the Serine Proteases Subtilisin Carlsberg and α-Chymotrypsin with Enantiomeric 1-Acetamido Boronic Acids. An Unexpected Reversal of the Normal “l”-Stereoselectivity Preference. J. Am. Chem. Soc. 1996, 118, 950–958. [Google Scholar] [CrossRef]
- Svedendahl, M.; Hult, K.; Berglund, P. Fast Carbon-Carbon Bond Formation by a Promiscuous Lipase. J. Am. Chem. Soc. 2005, 127, 17988–17989. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Z.-B.; Sun, D.-Z.; Jiang, G.-F.; Le, Z.-G. Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin. Molecules 2014, 19, 19665-19677. https://doi.org/10.3390/molecules191219665
Xie Z-B, Sun D-Z, Jiang G-F, Le Z-G. Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin. Molecules. 2014; 19(12):19665-19677. https://doi.org/10.3390/molecules191219665
Chicago/Turabian StyleXie, Zong-Bo, Da-Zhao Sun, Guo-Fang Jiang, and Zhang-Gao Le. 2014. "Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin" Molecules 19, no. 12: 19665-19677. https://doi.org/10.3390/molecules191219665
APA StyleXie, Z. -B., Sun, D. -Z., Jiang, G. -F., & Le, Z. -G. (2014). Facile Synthesis of Bis(indolyl)methanes Catalyzed by α-Chymotrypsin. Molecules, 19(12), 19665-19677. https://doi.org/10.3390/molecules191219665