A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Conjugates 3 and 4
Entry | Alloxazine | Conjugate | Method | Yield |
---|---|---|---|---|
1 | 5a | 8a | A | 68 |
2 | 5a | 8a | B | 82 |
3 | 5b | 8b | A | - b |
4 | 5b | 8b | B | 58 |
5 | 5c | 8c | A | 23 |
6 | 5c | 8c | B | 91 |
7 | 6 | 9 | A | 34 |
8 | 6 | 9 | B | 64 |
2.2. Catalytic Activity
Sulfide | Conversion b (%)/ee c (%) | Conversion of Blank b,d (%) | |
---|---|---|---|
3a | 1b e | ||
n-C4H9SCH3 | quant. f/33 | - | 97 |
quant. f/50 g | |||
n-C6H13SCH3 | 42/39 | 92/64 | 10 |
n-C8H17SCH3 | 9/11 | 44/29 | 2 |
n-C10H21SCH3 | 34/10 | 99/0 | 0 |
t-C4H9SCH3 | quant. f/13 | 98/86 | 98 |
quant. f/30 g | |||
c-C6H11SCH3 | 77/26 | 92/80 | 39 |
BnSCH3 | 59/35 | 92/58 | 20 |
p-TolylSCH3 | 36/26 | 96/69 | 4 |
PhSCH3 | 38/20 | 70/36 | 2 |
Catalyst | Concentration of Substrate (mM) | Reaction Time (h) | Conversion (%)/ee (%) | |||
---|---|---|---|---|---|---|
n-C4H9SCH3 | PhSCH3 | p-TolylSCH3 | t-C4H9SCH3 | |||
1a a | 120 | 1 | - | 93/64 | 99/80 | 99/88 |
3a b | 120 | 1 | quant. e/50 | - | - | quant. e/30 |
HAPMO c | 10–20 | 24 | 99/99 f | 96/99 | 77/99 | - |
CHMO d | 35 | overnight | - | 88/99 | 94/37 | 98/99 |
3. Experimental Section
3.1. General Information
3.2. Synthesis of Conjugates
3.2.1. Alkylation of 3-Methylalloxazine
General Procedure
3.2.2. Click Reactions
General Procedure A
General Procedure B
3.2.3. Quaternization of Conjugates
General Procedure
3.3. Catalytic Oxidations
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Iida, H.; Imada, Y.; Murahashi, S.I. Biomimetic flavin-catalysed reactions for organic synthesis. Org. Biomol. Chem. 2015, 13, 7599–7613. [Google Scholar] [CrossRef] [PubMed]
- Cibulka, R. Artificial flavin systems for chemoselective and stereoselective oxidations. Eur. J. Org. Chem. 2015, 2015, 915–932. [Google Scholar] [CrossRef]
- De Gonzalo, G.; Fraaije, M.W. Recent developments in flavin-based catalysis. ChemCatChem 2013, 5, 403–415. [Google Scholar] [CrossRef]
- Zelenka, J.; Hartman, T.; Klímová, K.; Hampl, F.; Cibulka, R. Phase-transfer catalysis in oxidations based on the covalent bonding of hydrogen peroxide to amphiphilic flavinium salts. ChemCatChem 2014, 6, 2843–2846. [Google Scholar] [CrossRef]
- Imada, Y.; Kitagawa, T.; Iwata, S.; Komiya, N.; Naota, T. Oxidation of sulfides with hydrogen peroxide catalyzed by synthetic flavin adducts with dendritic bis(acylamino)pyridines. Tetrahedron 2014, 70, 495–501. [Google Scholar] [CrossRef]
- Ménová, P.; Dvořáková, H.; Eigner, V.; Ludvík, J.; Cibulka, R. Electron-deficient alloxazinium salts: Efficient organocatalysts of mild and chemoselective sulfoxidations with hydrogen peroxide. Adv. Synth. Catal. 2013, 355, 3451–3462. [Google Scholar] [CrossRef]
- Jurok, R.; Hodačová, J.; Eigner, V.; Dvořáková, H.; Setnička, V.; Cibulka, R. Planar chiral flavinium salts: Synthesis and evaluation of the effect of substituents on the catalytic efficiency in enantioselective sulfoxidation reactions. Eur. J. Org. Chem. 2013, 2013, 7724–7738. [Google Scholar] [CrossRef]
- Imada, Y.; Takagishi, M.; Komiya, N.; Naota, T. Oxidation of sulfides with hydrogen peroxide catalyzed by vitamin B2 derivatives. Synth. Commun. 2013, 43, 3064–3071. [Google Scholar] [CrossRef]
- Shinkai, S.; Yamaguchi, T.; Manabe, O.; Toda, F. Enantioselective oxidation of sulphides with chiral 4a-hydroperoxyflavin. J. Chem. Soc. Chem. Commun. 1988, 1399–1401. [Google Scholar] [CrossRef]
- Huijbers, M.M.E.; Montersino, S.; Westphal, A.H.; Tischler, D.; van Berkel, W.J.H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 2014, 544, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Forneris, F.; Heuts, D.P.H.M.; Delvecchio, M.; Rovida, S.; Fraaije, M.W.; Mattevi, A. Structural analysis of the catalytic mechanism and stereoselectivity in streptomyces coelicolor alditol oxidase. Biochemistry 2008, 47, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Dekishima, Y.; Ueda, M. Biotechnological production of chiral organic sulfoxides: Current state and perspectives. Appl. Microbiol. Biotechnol. 2014, 98, 7699–7706. [Google Scholar] [CrossRef] [PubMed]
- Orru, R.; Dudek, H.M.; Martinoli, C.; Torres Pazmiño, D.E.; Royant, A.; Weik, M.; Fraaije, M.W.; Mattevi, A. Snapshots of enzymatic Baeyer-Villiger catalysis: Oxygen activation and intermediate stabilization. J. Biol. Chem. 2011, 286, 29284–29291. [Google Scholar] [CrossRef] [PubMed]
- Rioz-Martinez, A.; Kopacz, M.; de Gonzalo, G.; Torres Pazmino, D.E.; Gotor, V.; Fraaije, M.W. Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org. Biomol. Chem. 2011, 9, 1337–1341. [Google Scholar] [CrossRef] [PubMed]
- Colonna, S.; Sordo, S.D.; Gaggero, N.; Carrea, G.; Pasta, P. Enzyme-mediated catalytic asymmetric oxidations. Heteroat. Chem. 2002, 13, 467–473. [Google Scholar] [CrossRef]
- Holland, H.L. Biotransformation of organic sulfides. Nat. Prod. Rep. 2001, 18, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Breslow, R.; Dong, S.D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 1998, 98, 1997–2012. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, L.; Levine, M. Biomimetic catalysis. ACS Catal. 2011, 1, 1090–1118. [Google Scholar] [CrossRef]
- Takahashi, K. Organic reactions mediated by cyclodextrins. Chem. Rev. 1998, 98, 2013–2034. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, K.; Suresh, P.; Pitchumani, K. Per-6-amino-β-cyclodextrin as a reusable promoter and chiral host for enantioselective Henry reaction. Org. Lett. 2010, 12, 4070–4073. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-M.; Ji, H.-B. Amino alcohol-modified β-cyclodextrin inducing biomimetic asymmetric oxidation of thioanisole in water. Carbohydr. Res. 2012, 354, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Suresh, P.; Pitchumani, K. Per-6-amino-β-cyclodextrin catalyzed asymmetric michael addition of nitromethane and thiols to chalcones in water. Tetrahedron Asymmetry 2008, 19, 2037–2044. [Google Scholar] [CrossRef]
- Chan, W.-K.; Yu, W.-Y.; Che, C.-M.; Wong, M.-K. A cyclodextrin-modified ketoester for stereoselective epoxidation of alkenes. J. Org. Chem. 2003, 68, 6576–6582. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, C.; Christensen, B.; Bols, M. Artificial epoxidase II. Synthesis of cyclodextrin ketoesters and epoxidation of alkenes. Eur. J. Org. Chem. 2005, 2005, 2734–2739. [Google Scholar] [CrossRef]
- Schlatter, A.; Kundu, M.K.; Woggon, W.-D. Enantioselective reduction of aromatic and aliphatic ketones catalyzed by ruthenium complexes attached to β-cyclodextrin. Angew. Chem. Int. Ed. 2004, 43, 6731–6734. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.P.; Tong, W.; D’Souza, V.T. Efficient catalysis of a redox reaction by an artificial enzyme. J. Am. Chem. Soc. 1992, 114, 5470–5472. [Google Scholar] [CrossRef]
- Ye, H.; Tong, W.; D’Souza, V.T. Flavocyclodextrins as artificial redox enzymes. Part 4. Catalytic reactions of alcohols, aldehydes and thiols. J. Chem. Soc. Perkin Trans. 2 1994, 2431–2438. [Google Scholar] [CrossRef]
- D’Souza, V.T. Modification of cyclodextrins for use as artificial enzymes. Supramol. Chem. 2003, 15, 221–229. [Google Scholar] [CrossRef]
- Mojr, V.; Herzig, V.; Buděšínský, M.; Cibulka, R.; Kraus, T. Flavin-cyclodextrin conjugates as catalysts of enantioselective sulfoxidations with hydrogen peroxide in aqueous media. Chem. Commun. 2010, 46, 7599–7601. [Google Scholar] [CrossRef] [PubMed]
- Mojr, V.; Buděšínský, M.; Cibulka, R.; Kraus, T. Alloxazine-cyclodextrin conjugates for organocatalytic enantioselective sulfoxidations. Org. Biomol. Chem. 2011, 9, 7318–7326. [Google Scholar] [CrossRef] [PubMed]
- Hartman, T.; Herzig, V.; Buděšínský, M.; Jindřich, J.; Cibulka, R.; Kraus, T. Flavin-cyclodextrin conjugates: Effect of the structure on the catalytic activity in enantioselective sulfoxidations. Tetrahedron Asymmetry 2012, 23, 1571–1583. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Amblard, F.; Cho, J.H.; Schinazi, R.F. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev. 2009, 109, 4207–4220. [Google Scholar] [CrossRef] [PubMed]
- Faugeras, P.-A.; Boëns, B.; Elchinger, P.-H.; Brouillette, F.; Montplaisir, D.; Zerrouki, R.; Lucas, R. When cyclodextrins meet click chemistry. Eur. J. Org. Chem. 2012, 2012, 4087–4105. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Li, Y. Application of “click” chemistry to the construction of supramolecular functional systems. Asian J. Org. Chem. 2014, 3, 582–602. [Google Scholar] [CrossRef]
- Melone, L.; Petroselli, M.; Pastori, N.; Punta, C. Functionalization of cyclodextrins with N-hydroxyphthalimide moiety: A new class of supramolecular pro-oxidant organocatalysts. Molecules 2015, 20, 15881–15892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, J.B.; Jordan, B.J.; Xu, H.; Erdogan, B.; Lee, L.; Cheng, L.; Tiernan, C.; Cooke, G.; Rotello, V.M. Model systems for flavoenzyme activity: Site-isolated redox behavior in flavin-functionalized random polystyrene copolymers. Org. Lett. 2005, 7, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Subramani, C.; Yesilbag, G.; Jordan, B.J.; Li, X.; Khorasani, A.; Cooke, G.; Sanyal, A.; Rotello, V.M. Recognition mediated encapsulation and isolation of flavin-polymer conjugates using dendritic guest moieties. Chem. Commun. 2010, 46, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- Petter, R.C.; Salek, J.S.; Sikorski, C.T.; Kumaravel, G.; Lin, F.T. Cooperative binding by aggregated mono-6-(alkylamino)-β-cyclodextrins. J. Am. Chem. Soc. 1990, 112, 3860–3868. [Google Scholar] [CrossRef]
- Donnelly, P.S.; Zanatta, S.D.; Zammit, S.C.; White, J.M.; Williams, S.J. “Click” cycloaddition catalysts: Copper(I) and copper(II) tris(triazolylmethyl)amine complexes. Chem. Commun. 2008, 2459–2461. [Google Scholar] [CrossRef] [PubMed]
- Bach, R.D. General and Theoretical Aspects of the Peroxide Group, 2006; Rappoport, Z., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2006; Volume 2, pp. 1–92. [Google Scholar]
- De Gonzalo, G.; Torres Pazmiño, D.E.; Ottolina, G.; Fraaije, M.W.; Carrea, G. 4-Hydroxyacetophenone monooxygenase from pseudomonas fluorescens ACB as an oxidative biocatalyst in the synthesis of optically active sulfoxides. Tetrahedron Asymmetry 2006, 17, 130–135. [Google Scholar] [CrossRef]
- Rioz-Martínez, A.; de Gonzalo, G.; Pazmiño, D.E.T.; Fraaije, M.W.; Gotor, V. Enzymatic synthesis of novel chiral sulfoxides employing Baeyer-Villiger monooxygenases. Eur. J. Org. Chem. 2010, 2010, 6409–6416. [Google Scholar] [CrossRef]
- Spinella, A.; Caruso, T.; Martino, M.; Sessa, C. Synthesis of aplyolide A, ichthyotoxic macrolide isolated from the skin of the marine mollusk Aplysia depilans. Synlett 2011, 12, 1971–1973. [Google Scholar]
- Smith, L.H. Tetrahydrofurfuryl bromide. Org. Synth. 1943, 23, 88–89. [Google Scholar] [CrossRef]
- Jones, E.R.H.; Eglinton, G.; Whiting, M.C. 4-Pentyn-1-ol. Org. Synth. 1963, 4, 755. [Google Scholar] [CrossRef]
- Rodríguez Rivero, M.; Alonso, I.; Carretero, J.C. Vinyl sulfoxides as stereochemical controllers in intermolecular Pauson–Khand reactions: Applications to the enantioselective synthesis of natural cyclopentanoids. Chem.-Eur. J. 2004, 10, 5443–5459. [Google Scholar] [CrossRef] [PubMed]
- Cibulka, R.; Baxová, L.; Dvořáková, H.; Hampl, F.; Ménová, P.; Mojr, V.; Plancq, B.; Sayin, S. Catalytic effect of alloxazinium and isoalloxazinium salts on oxidation of sulfides with hydrogen peroxide in micellar media. Collect. Czechoslov. Chem. Commun. 2009, 74, 973–993. [Google Scholar] [CrossRef]
- Nandwana, V.; Samuel, I.; Cooke, G.; Rotello, V.M. Aromatic stacking interactions in flavin model systems. Acc. Chem. Res. 2012, 46, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 8 and 9 are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomanová, P.; Šturala, J.; Buděšínský, M.; Cibulka, R. A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts. Molecules 2015, 20, 19837-19848. https://doi.org/10.3390/molecules201119667
Tomanová P, Šturala J, Buděšínský M, Cibulka R. A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts. Molecules. 2015; 20(11):19837-19848. https://doi.org/10.3390/molecules201119667
Chicago/Turabian StyleTomanová, Petra, Jiří Šturala, Miloš Buděšínský, and Radek Cibulka. 2015. "A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts" Molecules 20, no. 11: 19837-19848. https://doi.org/10.3390/molecules201119667
APA StyleTomanová, P., Šturala, J., Buděšínský, M., & Cibulka, R. (2015). A Click Chemistry Approach towards Flavin-Cyclodextrin Conjugates—Bioinspired Sulfoxidation Catalysts. Molecules, 20(11), 19837-19848. https://doi.org/10.3390/molecules201119667