Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial Activity of the Protocatechuic Acid Ethyl Ester
2.2. Effect of Protocatechuic Acid Ethyl Ester in Association with Antibiotics against Staphylococcus aureus Strains
Strain | Cefoxitin Diameter of the Inhibition Zone [mm] | Presence of mecA | Methicillin Resistance Profile | Erythromycin Diameter of the Inhibition Zone [mm] | Clindamycin Diameter of the Inhibition Zone [mm] | Mechanism of Resistance to MLSB Antibiotics |
---|---|---|---|---|---|---|
S. aureus ATCC 25923 | 35 | − | MSSA | 25 | 25 | - |
S. aureus ATCC 43300 | 21 | + | MRSA | 0 | 0 | kMLSB |
S. aureus ATCC 6538 | 31 | + | MRSA | 30 | 30 | - |
S. aureus 1 | 34 | − | MSSA | 25 | 25 | - |
S. aureus 2 | 32 | − | MSSA | 23 | 25 | - |
S. aureus 3 | 31 | − | MSSA | 0 | 25 | iMLSB |
S. aureus 4 | 32 | + | MRSA | 25 | 27 | - |
S. aureus 5 | 13 | + | MRSA | 0 | 30 | iMLSB |
S. aureus 6 | 31 | − | MSSA | 30 | 35 | - |
S. aureus 7 | 32 | + | MRSA | 35 | 33 | - |
S. aureus 8 | 31 | − | MSSA | 30 | 35 | - |
S. aureus 9 | 30 | + | MRSA | 35 | 25 | - |
S. aureus 10 | 31 | − | MSSA | 10 | 22 | iMLSB |
S. aureus 11 | 31 | − | MSSA | 21 | 22 | - |
S. aureus 12 | 8 | + | MRSA | 0 | 0 | kMLSB |
S. aureus 13 | 14 | + | MRSA | 0 | 0 | kMLSB |
S. aureus 14 | 0 | + | MRSA | 0 | 0 | kMLSB |
S. aureus 15 | 21 | + | MRSA | 25 | 30 | - |
S. aureus 16 | 18 | + | MRSA | 0 | 0 | kMLSB |
S. aureus 17 | 11 | + | MRSA | 0 | 0 | kMLSB |
S. aureus 18 | 19 | + | MRSA | 25 | 30 | - |
S. aureus 19 | 14 | + | MRSA | 0 | 0 | kMLSB |
S. aureus 20 | 19 | + | MRSA | 0 | 0 | kMLSB |
Bacterial Strain | EDHB MIC (µg/mL) |
---|---|
S. aureus ATCC 25923 | 256 |
S. aureus ATCC 43300 | 512 |
S. aureus ATCC 6538 | 256 |
S. aureus 1 | 512 |
S. aureus 2 | 128 |
S. aureus 3 | 256 |
S. aureus 4 | 512 |
S. aureus 5 | 512 |
S. aureus 6 | 512 |
S. aureus 7 | 64 |
S. aureus 8 | 512 |
S. aureus 9 | 512 |
S. aureus 10 | 1024 |
S. aureus 11 | 512 |
S. aureus 12 | 256 |
S. aureus 13 | 512 |
S. aureus 14 | 512 |
S. aureus 15 | 512 |
S. aureus 16 | 512 |
S. aureus 17 | 256 |
S. aureus 18 | 1024 |
S. aureus 19 | 512 |
S. aureus 20 | 1024 |
Median | 512 |
LQ–UQ | 256–1024 |
Bacterial Strain | E | E + EDHB | ∆% | DA | DA + EDHB | ∆% | FOX | FOX + EDHB | ∆% | VA | VA + EDHB | ∆% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus ATCC 25923 | 0.38 | 0.50 | −32 | 0.064 | 0.094 | −47 | 1 | 1 | 0 | 0.75 | 1 | −25 |
S. aureus ATCC 43300 | 256 | 256 | 0 | 256 | 256 | 0 | 12 | 32 | −167 | 0.38 | 0.75 | −37 |
S. aureus ATCC 6538 | 0.064 | 0.094 | −47 | 0.023 | 0.023 | 0 | 2 | 1.5 | 25 | 0.50 | 0.38 | 12 |
S. aureus 1 | 0.50 | 0.50 | 0 | 0.064 | 0.047 | 27 | 2 | 1.5 | 25 | 0.75 | 0.38 | 37 |
S. aureus 2 | 0.50 | 0.38 | 24 | 0.064 | 0.047 | 27 | 0.75 | 1.5 | −100 | 0.38 | 0.38 | 0 |
S. aureus 3 | 256 | 256 | 0 | 0.023 | 0.047 | −104 | 1.5 | 1.5 | 0 | 0.50 | 0.38 | 12 |
S. aureus 4 | 0.38 | 0.19 | 50 | 0.064 | 0.032 | 50 | 2 | 1 | 50 | 0.50 | 0.25 | 25 |
S. aureus 5 | 256 | 16 | 94 | 0.094 | 0.016 | 83 | 256 | 256 | 0 | 0.75 | 0.75 | 0 |
S. aureus 6 | 0.50 | 0.38 | 24 | 0.064 | 0.064 | 0 | 1.5 | 2 | −33 | 0.38 | 0.50 | −12 |
S. aureus 7 | 0.38 | 0.25 | 34 | 0.032 | 0.016 | 50 | 1 | 0.75 | 25 | 0.50 | 0.50 | 0 |
S. aureus 8 | 0.19 | 0.38 | −100 | 0,032 | 0,016 | 50 | 1.5 | 0.75 | 50 | 0.38 | 0.38 | 0 |
S. aureus 9 | 0.38 | 0.19 | 50 | 0.064 | 0.032 | 50 | 1 | 1 | 0 | 0.38 | 0.25 | 13 |
S. aureus 10 | 32 | 32 | 0 | 0.047 | 0.016 | 66 | 2 | 1 | 50 | 0.38 | 0.25 | 13 |
S. aureus 11 | 0.38 | 0.19 | 50 | 0.047 | 0.047 | 0 | 1.5 | 2 | −33 | 0.38 | 0.19 | 19 |
S. aureus 12 | 256 | 256 | 0 | 256 | 256 | 0 | 256 | 256 | 0 | 0.75 | 0.50 | 25 |
S. aureus 13 | 256 | 256 | 0 | 256 | 256 | 0 | 32 | 256 | −700 | 0.75 | 0.50 | 25 |
S. aureus 14 | 256 | 256 | 0 | 256 | 256 | 0 | 256 | 256 | 0 | 0.75 | 0.50 | 25 |
S. aureus 15 | 0.25 | 0.50 | −100 | 0.064 | 0.032 | 50 | 8 | 12 | −50 | 0.38 | 0.38 | 0 |
S. aureus 16 | 256 | 256 | 0 | 256 | 256 | 0 | 256 | 256 | 0 | 0.50 | 0.75 | −25 |
S. aureus 17 | 256 | 256 | 0 | 256 | 256 | 0 | 256 | 256 | 0 | 0.38 | 0.38 | 0 |
S. aureus 18 | 0.38 | 0.38 | 0 | 0.047 | 0.023 | 51 | 6 | 6 | 0 | 0.50 | 0.50 | 0 |
S. aureus 19 | 256 | 256 | 0 | 256 | 256 | 0 | 256 | 256 | 0 | 0.50 | 0.38 | 12 |
S. aureus 20 | 256 | 256 | 0 | 256 | 256 | 0 | 12 | 256 | −2033 | 0.38 | 0.50 | −12 |
median | 0.5 | 0.5 | 0 | 0.064 | 0.047 | 0 | 2 | 2 | 0 | 0.50 | 0.38 | 0 |
LQ | 0.38 | 0.38 | 0 | 0.047 | 0.023 | 0 | 1.5 | 1.25 | −33 | 0.38 | 0.38 | 0 |
UQ | 256 | 256 | 94 | 256 | 256 | 84 | 256 | 256 | 50 | 0.75 | 1 | 37 |
p | 0.306 | 0.038 | 0.328 | 0.196 |
2.3. Discussion
3. Experimental Section
3.1. Bacterial Strains and Protocatechuic Acid Ethyl Ester
3.2. Identification of Examined Strains
3.3. Phenotypic and Genotypic Resistance to Methicillin
3.4. Antimicrobial Susceptibility Testing
3.5. Microdilution Method
3.6. Combined Effect of EDHB and Antibiotics on S. aureus Strains
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wojtyczka, R.D.; Orlewska, K.; Kępa, M.; Idzik, D.; Dziedzic, A.; Mularz, T.; Krawczyk, M.; Miklasińska, M.; Wąsik, T.J. Biofilm Formation and Antimicrobial Susceptibility of Staphylococcus epidermidis Strains from a Hospital Environment. Int. J. Environ. Res. Public Health 2014, 11, 4619–4633. [Google Scholar] [CrossRef] [PubMed]
- Fiedotow, M.; Denys, A. Wybrane aspekty zakażeń szpitalnych. Pol. Merk. Lek. 2006, 125, 484–488. [Google Scholar]
- Sierocka, A.; Cienciara, M. Monitorowanie zakażeń szpitalnych jako element procesu zarządzania ryzykiem. Zakażenia 2011, 1, 81–89. [Google Scholar]
- Mirecka, A. Zakażenia szpitalne. Bad. Diagn. 2007, 13(8/9), 53–58. [Google Scholar]
- Jawień, M.; Wójkowska-Mach, J.; Bulanda, M.; Heczko, P.B. Wdrażanie systemu czynnej rejestracji zakażeń szpitalnych w polskich szpitalach. Przegl. Epidemiol. 2004, 58, 483–491. [Google Scholar] [PubMed]
- Kuczmarska, A.; Zabija, B. Profilaktyka zakaże szpitalnych. Menedżer Zdr. 2010, 10, 62. [Google Scholar]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Mikrobiologia; Elsevier Urban & Partner: Wrocław, Poland, 2011; Volume 6, pp. 161–164, 195–203, 205–210. [Google Scholar]
- Plata, K.; Rosato, A.E.; Węgrzyn, G. Staphylococcus aureus an infectious agent: Overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochim. Pol. 2009, 56, 597–612. [Google Scholar] [PubMed]
- Wojtyczka, R.D.; Dziedzic, A.; Kepa, M.; Kubina, R.; Dzik, A.K.; Mularz, T.; Idzik, D. Berberine Enhances the Antibacterial Activity of Selected Antibiotics against Coagulase-Negative Staphylococcus Strains in Vitro. Molecules 2014, 19, 6583–6596. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, B.M.; Arora, S.; Lim, C.S. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus. Braz. J. Microbiol. 2012, 43, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Wojtyczka, R.D.; Dziedzic, A.; Idzik, D.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Smoleń-Dzirba, J.; Stojko, J.; Sajewicz, M.; Wąsik, T.J. Susceptibility of Staphylococcus aureus clinical isolates to propolis extract alone or in combination with antimicrobial drugs. Molecules 2013, 18, 9623–9640. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; et al. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol. 2011, 137, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Cuschnie, T.P.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Jiang, Y.; Xia, L.; Xiang, H.; Feng, H.; Pu, S.; Huang, N.; Yu, L.; Deng, X. Subinhibitory concentrations of licochalcone A decrease alpha-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Lett. Appl. Microbiol. 2010, 50, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Deng, X.; Qiu, J. Antimicrobial Activity of Licochalcone E against Staphylococcus aureus and its Impact on the Production of Staphylococcal Alpha-Toxin. J. Microbiol. Biotechnol. 2012, 22, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Cuschnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Luís, Â.; Silva, F.; Sousa, S.; Duarte, A.P.; Domingues, F. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 2014, 30, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Saavedra, M.J.; Simões, M. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 2012, 28, 755–767. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Iveta, H.; Vladimir, F.; Jan, S.D. Antimicrobial and Antioxidant Properties of Phenolic Acids Alkyl Esters. Czech J. Food Sci. 2010, 28, 275–279. [Google Scholar]
- Raphael, J.; Rivo, J.; Beeri, V.; Abedat, S.; Gozal, Y. Mechanism of myocardial ischemia preconditioning: A potential protective role for hif-1 in a rabbit model of regional myocardial ischemia. Anesthesiology 2004, 101, A717. [Google Scholar]
- Sebastian, P.; Lin, C.; Barbara, L.; Malte, K.; Rainer, S.; Michael, V.C.; James, M.D. Desferoxamine and ethyl-3,4-dihydroxybenzoate protect myocardium by activating NOS and generating mitochondrial ROS. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, 450–457. [Google Scholar]
- Kang, S.N.; Lee, J.S.; Park, J.H.; Cho, J.H.; Park, J.H.; Cho, K.K.; Lee, O.H.; Kim, I.S. In vitro anti-osteoporosis properties of diverse Korean Drynariae rhizoma phenolic extracts. Nutrients 2014, 6, 1737–1751. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Buss, J.; Chen, G.; Ponka, P.; Pantopoulos, K. The prolyl 4-hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate generates effective iron deficiency in cultured cells. FEBS Lett. 2002, 529, 309–312. [Google Scholar] [CrossRef]
- Kasiganesan, H.; Sridharan, V.; Wright, G. Prolyl hydroxylase inhibitor treatment confers whole-animal hypoxia tolerance. Acta Physiol. 2007, 190, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Tetsuo, S.; Kari, M.S.; Jouni, U. Reduction of Collagen Production in Keloid Fibroblast Cultures by Ethyl-3,4-dihydroxybenzoate. J. Biol. Chem. 1987, 262, 9397–9403. [Google Scholar]
- Nandan, D.; Clarke, E.P.; Ball, E.H.; Sanwal, B.D. Ethyl-3,4-dihydroxybenzoate inhibits myoblast differentiation: evidence for an essential role of collagen. J. Cell Biol. 1990, 110, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Gilkes, D.M.; Chaturvedi, P.; Bajpai, S.; Wong, C.C.; Wei, H.; Pitcairn, S.; Hubbi, M.E.; Wirtz, D.; Semenza, G.L. Collagen Prolyl Hydroxylases Are Essential for Breast Cancer Metastasis. Cancer Res. 2013, 73, 3285–3296. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Li, W.; Sun, Y.; Zhou, L.; Xu, Y.; Zhao, X. A prolyl-hydroxylase inhibitor, ethyl-3,4-dihydroxybenzoate, induces cell autophagy and apoptosis in esophageal squamous cell carcinoma cells via up-regulation of BNIP3 and N-myc downstream-regulated gene-1. PLoS ONE 2014, 9, e107204. [Google Scholar] [CrossRef] [PubMed]
- Muley, M.M.; Thakare, V.N.; Patil, R.R.; Bafna, P.A.; Naik, S.R. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model. Life Sci. 2013, 93, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Mandalari, G.; Bisignano, C.; D'Arrigo, M.; Ginestra, G.; Arena, A.; Tomaino, A.; Wickham, M.S. Antimicrobial potential of polyphenols extracted from almond skins. Lett. Appl. Microbiol. 2010, 51, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 2010, 6, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Nana, F.; Ngameni, B.; Mbaveng, A.T.; Keumedjio, F.; Ngadjui, B.T. Antimicrobial activity of the crude extract, fractions and compounds from stem bark of Ficus ovate (Moraceae). J. Ethnopharmacol. 2009, 124, 556–561. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.; Yin, M.C. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog. Dis. 2009, 6, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Tsao, S.; Yin, M. In vitro Antibacterial Activity of Roselle Calyx and Protocatechuic Acid. Acids Phytother. Res. 2005, 19, 942–945. [Google Scholar]
- Liu, W.; Hsu, C.; Yin, M. In Vitro Anti-Helicobacter pylori Activity of Diallyl Sulphides and Protocatechuic Acid. Phytother. Res. 2008, 22, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, C.; Filocamo, A.; La Camera, E.; Zummo, S.; Fera, M.; Mandalari, G. Antibacterial activities of almond skins on cagA-positive and-negative clinical isolates of Helicobacter pylori. BMC Microbiol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.; Iihara, H.; Noda, M.; Song, S.X.; Nhung, P.H.; Ohkusu, K.; Kawamaura, Y.; Ezaki, T. dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int. J. Syst. Evol. Microbiol. 2007, 57, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Minamide, W.; Wada, K.; Nakamura, E.; Teraoka, H.; Watanabe, S. Identification of methicillin-resistant strains of Staphylococci by polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 2240–2244. [Google Scholar] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST definitive document E. Def 1.2. Clin. Microbiol. Infect. 2000, 6, 503–508. [Google Scholar]
- Amsterdam, D. Susceptibility Testing of Antimicrobials in Liquid Media. In Antibiotics in Laboratory Medicine, 5th ed.; Loman, V., Ed.; Williams and Wilkins: Philadelphia, PA, USA, 2005; pp. 61–143. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determinantion of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. EUCAST discussion document E. dis 5.1. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar] [CrossRef]
- Cudic, M.; Condie, B.A.; Weiner, D.J.; Lysenko, E.S.; Xiang, Z.Q.; Insug, O.; Bulet, P.; Otvos, L., Jr. Development of novel antibacterial peptides that kill resistant clinical isolates. Peptides 2002, 23, 2071–2083. [Google Scholar] [CrossRef]
- Devienne, K.F.; Raddi, M.S.G. Screening for antimicrobial activity of natural Products using a microplate photometer. Braz. J. Microbiol. 2002, 33, 166–168. [Google Scholar] [CrossRef]
- Fernandes, A., Jr.; Balestrin, E.C.; Betoni, J.E.C.; Orsi, R.O.; da Cunha, M.R.S.; Montelli, A.C. Propolis: Anti-Staphylococcus aureus activity and synergism with antimicrobial drugs. Memórias. Instituto. Oswaldo Cruz 2005, 100, 563–566. [Google Scholar] [CrossRef]
- Mahon, C.R.; Manuselis, J.R.G. Textbook of Diagnostic Microbiology; W.B. Saunders: Philadelphia, PA, USA, 1995. [Google Scholar]
- Sample Availability: Samples of the compounds and clinical strains are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miklasińska, M.; Kępa, M.; Wojtyczka, R.D.; Idzik, D.; Zdebik, A.; Orlewska, K.; Wąsik, T.J. Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs. Molecules 2015, 20, 13536-13549. https://doi.org/10.3390/molecules200813536
Miklasińska M, Kępa M, Wojtyczka RD, Idzik D, Zdebik A, Orlewska K, Wąsik TJ. Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs. Molecules. 2015; 20(8):13536-13549. https://doi.org/10.3390/molecules200813536
Chicago/Turabian StyleMiklasińska, Maria, Małgorzata Kępa, Robert D. Wojtyczka, Danuta Idzik, Anna Zdebik, Kamila Orlewska, and Tomasz J. Wąsik. 2015. "Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs" Molecules 20, no. 8: 13536-13549. https://doi.org/10.3390/molecules200813536
APA StyleMiklasińska, M., Kępa, M., Wojtyczka, R. D., Idzik, D., Zdebik, A., Orlewska, K., & Wąsik, T. J. (2015). Antibacterial Activity of Protocatechuic Acid Ethyl Ester on Staphylococcus aureus Clinical Strains Alone and in Combination with Antistaphylococcal Drugs. Molecules, 20(8), 13536-13549. https://doi.org/10.3390/molecules200813536