Disaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Flavor
2.2. Evaluation of Phenolics
3. Discussion
4. Materials and Methods
4.1. Sample Preparation
4.2. Gas Chromatography/Mass Spectrometry (GC/MS) Analysis
4.3. Determination of Total Phenolics
4.4. Determination of Flavonoids and Flavonols
4.5. Total Monomeric Anthocyanin Content and Polymeric Color Determination
4.6. Antioxidant Activity
4.7. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frank, D.C.; Eyres, G.T.; Piyasiri, U.; Delahunty, C.M. Effect of food matrix structure and composition on aroma release during oral processing using in vivo monitoring. Flav. Frag J. 2012, 27, 433–444. [Google Scholar] [CrossRef]
- Rubio Rubio Rubio-Araez, S.; Ferrer, C.; Capella, J.V.; Ortola, M.D.; Castello, M.L. Development of Lemon Marmalade Formulated with New Sweeteners (Isomaltulose and Tagatose): Effect on Antioxidant, Rheological and Optical Properties. J. Food Process Eng. 2017, 40, e12371. [Google Scholar] [CrossRef]
- Rubio-Araez, S.; Capella, J.V.; Ortola, M.D.; Castello, M.L. Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. J. Food Sci. Technol. 2016, 53, 3642–3650. [Google Scholar] [CrossRef] [PubMed]
- Seuvre, A.-M.; Philippe, E.; Rochard, S.; Voilley, A. Retention of aroma compounds in food matrices of similar rheological behaviour and different compositions. Food Chem. 2006, 96, 104–114. [Google Scholar] [CrossRef]
- Poll, L.; Barixtofte, M. Influence of harvest year and harvest time on soluble solids, titrateable acid, anthocyanin content and aroma components in sour cherry (Prunuscerasus L. cv. “Stevnsbær”). Eur. Food Res. Technol. 2003, 216, 212–216. [Google Scholar] [CrossRef]
- Schmid, W.; Grosch, W. Quantitative Analyse flüchtiger Aromastoffe mit hohen Aromawerten in Sauerkirschen (Prunus cerasus L.), Süßkirschen (Prunus avium L.) und Kirschkonfitüren. Zeitschrift für Lebensmittel.-Untershuncung und Forschung 1986, 183, 39–44. [Google Scholar] [CrossRef]
- Siddiq, M.; Iezzoni, A.; Khan, A.; Breen, P.; Sebolt, A.M.; Dolan, K.D.; Ravi, R. Characterization of New Tart Cherry (Prunuscerasus L.): Selections Based on Fruit Quality, Total Anthocyanins, and Antioxidant Capacity. Int. J. Food Prop. 2011, 14, 471–480. [Google Scholar] [CrossRef]
- Taghadomi-Saberi, S.; Omid, M.; Emam-Djomeh, Z.; Ahmadi, H. Development of an intelligent system to determine sour cherry's antioxidant activity and anthocyanin content during ripening. Int. J. Food Prop. 2014, 14, 1169–1181. [Google Scholar] [CrossRef]
- Kopjar, M.; Oršolić, M.; Piližota, V. Anthocyanins, phenols and antioxidant activity of sour cherry puree extracts and their stability during storage. Int. J. Food Prop. 2014, 17, 1393–1405. [Google Scholar] [CrossRef]
- Bonerz, D.; Wurth, K.; Dietrich, H.; Will, F. Analytical characterization and the impact of aging on anthocyanin composition and degradation in juices from five sour cherry cultivars. Eur. Food Res. Technol. 2007, 224, 355–364. [Google Scholar] [CrossRef]
- Capanoglu, E.; Boyacioglu, D.; de Vos, R.C.H.; Hall, R.D.; Beekwilder, J. Procyanidins in fruit from Sour cherry (Prunuscerasus) differ strongly in chain length from those in Laurel cherry (Prunuslauracerasus) and Cornelian cherry (Cornusmas). J. Berry Res. 2011, 1, 137–146. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C.; Halliwell, B. Free radicals and antioxidants in the year 2000: A historical look to the future. Ann. N. Y. Acad. Sci. 2000, 899, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Komes, D.; Lovrić, T.; Ganić, K.K.; Gracin, L. Study of trehalose addition on aroma retention in dehydrated strawberry puree. Food Technol. Biotechnol. 2003, 41, 111–119. [Google Scholar]
- Komes, D.; Lovrić, T.; Ganić, K.K.; Kljusurić, J.G.; Banović, M. Trehalose improves flavour retention in dehydrated apricot puree. Int. J. Food Sci. and Technol. 2005, 40, 425–435. [Google Scholar] [CrossRef]
- Komes, D.; Lovrić, T.; KovačevićGanić, K. Aroma of dehydrated pear products. LWT Food Sci. Technol. 2007, 40, 1578–1586. [Google Scholar] [CrossRef]
- Kopjar, M.; Hribar, J.; Simčič, M.; Zlatić, E.; Tomaž, P.; Piližota, V. Effect of Trehalose Addition on Volatiles Responsible for Strawberry Aroma. Nat. Prod. Commun. 2013, 8, 1767–1770. [Google Scholar] [PubMed]
- Zlatić, E.; Pichler, A.; Lončarić, A.; Vidrih, R.; Požrl, T.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile compounds of freeze-dried sour cherry puree affected by addition of sugars. Int. J. Food Prop. 2017, 1–8. [Google Scholar] [CrossRef]
- Galmarini, M.V.; van Baren, C.; Zamora, M.C.; Chirife, J.; Di Leo Lira, P.; Bandoni, A. Impact of trehalose, sucrose and/or maltodextrin addition on aroma retention in freeze dried strawberry puree. Int. J. Food Sci. Technol. 2011, 46, 1337–1345. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V.; Hribar, J.; Simčič, M.; Zlatič, E.; NedicTiban, N. Influence of trehalose addition and storage conditions on the quality of strawberry cream filling. J. Food Eng. 2008, 87, 341–350. [Google Scholar] [CrossRef]
- Betoret, E.; Calabuig-Jimenez, L.; Patrignani, F.; Lanciotti, R.; Dalla Rosa, M. Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT-Food Sci. Technol. 2016, 85, 418–422. [Google Scholar] [CrossRef]
- Betoret, E.; Mannozzi, C.; Dellarosa, N.; Laghi, L.; Rocculi, P.; Dalla Rosa, M. Metabolomic studies after high pressure homogenization processed low pulp mandarin juice with trehalose addition. Functional and technological properties. J. Food Eng. 2017, 200, 22–28. [Google Scholar] [CrossRef]
- Kopjar, M.; Jakšić, K.; Piližota, V. Influence of sugars and chlorogenic acid addition on anthocyanin content, antioxidant activity and color of blackberry juice during storage. J. Food Process Preserv. 2012, 36, 545–552. [Google Scholar] [CrossRef]
- Loncaric, A.; Dugalic, K.; Mihaljevic, I.; Jakobek, L.; Pilizota, V. Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple puree. J. Agric. Food Chem. 2014, 62, 1674–1682. [Google Scholar] [CrossRef] [PubMed]
- Lončarić, A.; Pichler, A.; Trtinjak, I.; Piližota, V.; Kopjar, M. Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides. LWT-Food Sci. Technol. 2016, 73, 391–396. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Sablani, S.S.; Tang, J.; Powers, J.; Swanson, B.G. Stability of Anthocyanins in Frozen and Freeze-Dried Raspberries during Long-Term Storage: In Relation to Glass Transition. J. Food Sci. 2011, 76, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Markakis, P.; Livingstone, G.E.; Fellers, R.C. Quantitative aspects of strawberry pigment degradation. J. Food Sci. 1957, 22, 117–130. [Google Scholar] [CrossRef]
- Erlandson, J.A.; Wrolstad, R.E. Degradation of anthocyanins at limited water concentrations. J. Food Sci. 1972, 37, 592–595. [Google Scholar] [CrossRef]
- Lerbret, A.; Bordat, P.; Affouard, F.; Descamps, M.; Migliardo, F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 11046–11057. [Google Scholar] [CrossRef] [PubMed]
- Bordat, P.; Lerbret, A.; Demaret, J.-P.; Affouard, F.; Descamps, M. Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhys. Lett. 2004, 65, 41–47. [Google Scholar] [CrossRef]
- Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. NMR and quantum chemical study on the OH...pi and CH...O interactions between trehalose and unsaturated fatty acids: Implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003, 125, 12739–12748. [Google Scholar] [CrossRef] [PubMed]
- Oku, K.; Kurose, M.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Okabe, A.; Sakurai, M. Combined NMR and Quantum Chemical Studies on the Interaction between Trehalose and Dienes Relevant to the Antioxidant Function of Trehalose. J. Phys. Chem. B 2005, 109, 3032–3040. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, K.; Okabe, A.; Oku, K.; Sakurai, M. Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J. Phys. Chem. B 2011, 115, 9823–9830. [Google Scholar] [CrossRef] [PubMed]
- Engelsena, S.B.; Monteiro, C.; de Penhoat, C.H.; Pérez, S. The diluted aqueous solvation of carbohydrates as inferred from molecular dynamics simulations and NMR spectroscopy. Biophys. Chem. 2001, 93, 103–127. [Google Scholar] [CrossRef]
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Musts and Wines, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1988; pp. 196–221. ISBN 9780471627579. [Google Scholar]
- Kumaran, A.; Karunakaran, R.J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Current Protocols in Food Analytical Chemistry, 1st ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2001; pp. F. 1.2.1.–F. 1.2.13. ISBN 9780471142911. [Google Scholar]
Sample Availability: Samples of the compounds not available from the authors. |
Volatiles | Juice | Juice + Maltose | Juice + Sucrose | Juice + Trehalose |
---|---|---|---|---|
1-propanol | 4.365±0.205 a,c | 3.923±0.129 b | 4.472±0.054 c | 4.113±0.087 a,b |
2-methyl-1-propanol | 14.335±0.583 a | 9.079±0.335 b | 12.0258±0.452 c | 10.744±0.265 d |
1-butanol | 29.727±0.949 a,b | 29.354±0.328 a | 31.331±0.656 b | 29.373±0.493 a |
3-methyl-1-butanol | 3.255±0.241 a | 2.507±0.122 b | 2.825±0.044 c | 2.707±0.071 c |
3-methyl-3-buten-1-ol | 0.278±0.018 a | 0.144±0.020 b | 0.219±0.013 c | 0.186±0.026 b |
1-pentanol | 1.163±0.030 a | 1.931±0.152 b | 1.863±0.049 b | 1.615±0.069 c |
1-penten-3-ol | 0.064±0.015 a | 0.059±0.008 a | 0.065±0.005 a | 0.078±0.011 a |
1-hexanol | 5.730±0.129 a | 5.769±0.190 a | 6.196±0.086 b | 6.278±0.120 b |
2-heptanol | 5.087±0.114 a | 5.265±0.160 a,b | 5.371±0.120 b | 5.423±0.131 b |
1-octanol | 0.785±0.031 a | 0.469±0.094 b | 1.032±0.080 c | 0.891±0.065 d |
benzyl alcohol | 3.477±0.170 a | 0.0048±0.001 b | 4.207±0.130 c | 4.050±0.222 c |
2-phenyl ethyl alcohol | 3.556±0.320 a | 0.261±0.028 b | 0.422±0.096 c | 0.444±0.039 c |
1-butanol-3-metyl-acetate | 1.407±0.052 a | 1.555±0.315 a,b | 1.641±0.095 a,b,c | 1.844±0.102 c |
hexyl acetate | 0.647±0.041 a | 0.630±0.054 a | 0.788±0.057 b | 0.933±0.053 c |
2-methyl butyl butanoate | 1.061±0.106 a | 1.340±0.116 b | 0.932±0.069 a | 1.292±0.121 b |
3-methyl butyl butanoate | 0.216±0.016 a,b | 0.187±0.013 a | 0.231±0.017 b | 0.290±0.018 c |
2-metyl butanoate | 1.616±0.035 a | 1.864±0.043 b | 1.902±0.010 b | 1.923±0.075 b |
2-hexenal | 0.467±0.018 a | 0.469±0.032 a,b | 0.501±0.015 b | 0.523±0.024 b |
β-cyclocitral | 0.897±0.036 a | 0.842±0.044 a | 1.011±0.050 b | 1.055±0.031 b |
benzaldehyde | 85.901±0.260 a | 77.214±3.053 b | 81.023±2.664 b | 84.716±0.264 c |
α-ionone | 3.979±0.125 a | 3.425±0.226 b | 3.518±0.197 b | 3.797±0.135 a,b |
β-ionone | 5.111±0.226 a | 4.461±0.112 b | 4.480±0.130 b | 4.946±0.154 a |
diacetyl | 0.949±0.045 a | 0.881±0.048 a | 0.906±0.022 a | 0.904±0.013 a |
2-decanon | 0.869±0.073 a | 0.909±0.021 a | 0.855±0.070 a | 0.931±0.027 a |
acetoin | 0.736±0.044 a | 0.749±0.044 a | 0.813±0.042 a | 0.769±0.038 a |
o-cymene | 8.959±0.712 a | 12.271±0.488 b | 14.142±0.146 c | 12.149±0.215 b |
geranic oxide | 2.991±0.525 a | 8.596±0.565 b | 4.969±0.377 c | 7.401±0.619 b |
eugenol | 0.473±0.010 a | 0.600±0.031 b | 0.582±0.022 b | 0.623±0.041 b |
Samples | Phenolic Content (g GAE/L) | Flavonoid Content (mg RE/L) | Flavanone Content (mg RE/L) |
---|---|---|---|
juice | 1.550 ± 0.014 a | 354.84 ± 0.05 a | 121.11 ± 0.04 a |
juice + sucrose | 1.600 ± 0.018 b | 369.62 ± 0.02 b | 79.84 ± 0.06 b |
juice + trehalose | 1.633 ± 0.011 b | 330.19 ± 0.03 c | 28.33 ± 0.08 b |
juice + maltose | 1.443 ± 0.016 c | 378.49 ± 0.04 d | 161.98 ± 0.08 c |
Samples | Anthocyanin Content (mg C-3-G/L) | Percentage of Polymeric Color (%) |
---|---|---|
juice | 214.038 ± 1.199 a | 29.375 ± 0.148 a |
juice + sucrose | 286.553 ± 1.416 b | 29.995 ± 0.155 a |
juice + trehalose | 297.825 ± 1.250 c | 30.405 ± 0.186 a |
juice + maltose | 206.649 ± 1.896 d | 29.456 ± 0.147 a |
Samples | DPPH | ABTS |
---|---|---|
juice | 1.115 ± 0.008 a | 1.562 ± 0.006 a |
juice + sucrose | 1.151 ± 0.010 b | 1.662 ± 0.008 b |
juice + trehalose | 1.174 ± 0.006 c | 1.680 ± 0.005 c |
juice + maltose | 1.165 ± 0.006 b,c | 1.672 ± 0.005 b,c |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zlatić, E.; Pichler, A.; Kopjar, M. Disaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice. Molecules 2017, 22, 1939. https://doi.org/10.3390/molecules22111939
Zlatić E, Pichler A, Kopjar M. Disaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice. Molecules. 2017; 22(11):1939. https://doi.org/10.3390/molecules22111939
Chicago/Turabian StyleZlatić, Emil, Anita Pichler, and Mirela Kopjar. 2017. "Disaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice" Molecules 22, no. 11: 1939. https://doi.org/10.3390/molecules22111939
APA StyleZlatić, E., Pichler, A., & Kopjar, M. (2017). Disaccharides: Influence on Volatiles and Phenolics of Sour Cherry Juice. Molecules, 22(11), 1939. https://doi.org/10.3390/molecules22111939