Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland
Abstract
:1. Introduction
2. Results and Discussion
2.1. Major Chemical Compounds
2.2. Identification and Quantification of Phenolic Compounds
2.2.1. Anthocyanins
2.2.2. Phenolic Acids
2.2.3. Flavonols
2.2.4. Flavan-3-ols
2.3. Triterpenoid Compounds
2.4. Composition of Carotenoids and Chlorophylls
2.5. Antioxidant Activity and Correlations
2.6. Principal Component Analysis (PCA)
- (1)
- clones type S and type N with the highest concentrations of oleanolic acid (OA), flavonols (FL), phenolic acids (PA), total carotenoid compounds (TCC), β-carotene (BCA), total triterpenoid compounds (TTC), and zeaxanthin. Additionally, a positive correlation with antioxidant capacity was detected.
- (2)
- cvs. “Smoky” and “Honeywood” with the high antioxidant activity (ABTS, FRAP), and high contents of anthocyanins (ANT), phenolic compounds (PC), betulinic acid (BA), ursolic acid (UA), polymeric procyanidin (PP), total sugar (TS), ash, and lutein. Additionally, a positive correlation with antioxidant capacity was detected.
- (3)
- cvs. “Martin” and “Pembina” with high contents of flavan-3-ols (F3o) and a positive correlation with antioxidant capacity.
- (4)
- clone No. 5/6 with the highest content of chlorophylls (CH) and low antioxidant capacity.
3. Materials and Methods
3.1. Reagent and Standard
3.2. Plant Materials
3.3. Identification and Quantification of Polyphenols
3.4. Analysis of Proanthocyanidins by the Phloroglucinolysis Method
3.5. Identification and Quantification of Carotenoids and Chlorophylls
3.6. Identification and Quantification of Triterpenoids
3.7. Determination of Antioxidant Activity
3.8. Analysis of Sugar by the HPLC-ELSD Method
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pruski, K.; Mohyuddin, M.; Grainger, G. Saskatoon (Amelanchier alnifolia Nutt.). In Biotechnology in Agriculture and Forestry, Trees III; Bajaj, Y.P.S., Ed.; Springer Verlag: Berlin, Germany, 1991; Volume 16. [Google Scholar]
- USDA Forest Service. Taxonomy of Saskatoon Berry (Amelanchier alnifolia) and Blueberry. 1988. Available online: http://www.itis.usda.gov/servlet/SingleRep?search_topic=TNS&search_value=182033 (accessed on 15 February 2017).
- Mazza, G. Compositional and functional properties of Saskatoon berry and blueberry. Int. J. Fruit Sci. 2005, 5, 101–120. [Google Scholar] [CrossRef]
- St-Pierre, R.G. Growing Saskatoon—A Manual for Orchardists. Ph.D. Thesis, Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, 1997. [Google Scholar]
- Zatylny, A.M.; Ziehl, W.D.; St-Pierre, R.G. Physicochemical properties of fruit of 16 Saskatoon (Amelanchier alnifolia Nutt.) cultivars. Can. J. Plant Sci. 2005, 85, 933–938. [Google Scholar] [CrossRef]
- Green, R.C.; Mazza, G. Relationships between anthocyanins, total phenolics, carbohydrates, acidity and colour of saskatoon berries. J. Can. Inst. Food Sci. Technol. 1986, 19, 107–113. [Google Scholar] [CrossRef]
- Mazza, G. Chemical composition of saskatoon berries (Amelanchier alnifolia Nutt.). J. Food Sci. 1982, 47, 1730–1731. [Google Scholar] [CrossRef]
- Rop, O.; Řezníček, V.; Mlček, J.; Juríková, T.; Sochor, J.; Kizek, R.; Humpolíček, P.; Balík, J. Nutritional values of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.). Hort. Sci. 2012, 39, 123–128. [Google Scholar]
- Bakowska-Barczak, A.M.; Kolodziejczyk, P. Evaluation of Saskatoon berry (Amelanchier alnifolia Nutt.) cultivars for their polyphenol content, antioxidant properties, and storage stability. J. Agric. Food Chem. 2008, 56, 9933–9940. [Google Scholar] [CrossRef] [PubMed]
- Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlček, J.; Baron, M. Flavonoid Profile of Saskatoon berries (Amelanchier alnifolia Nutt.) and Their Health Promoting Effects. Molecules 2013, 18, 12571–12586. [Google Scholar] [CrossRef] [PubMed]
- Pluta, S.; Żurawicz, E. Świdośliwa—Możliwość Uprawy w Polsce. Materiały z Ogólnopolskiej Konferencji “Nauka w Praktyce”. In Proceedings of the Intensyfikacja uprawy krzewów jagodowych przez wdrażanie najnowszych wyników badań, Uprawa borówki wysokiej oraz mało znanych krzewów jagodowych, Skierniewice, Polska, 28 March 2012. [Google Scholar]
- Żurawicz, E.; Pluta, S.; Kucharska, D. Amelanchier—A new berry crop in Poland with good potential for commercial cultivation. Acta Hortic. 2014, 1017, 251–255. [Google Scholar] [CrossRef]
- Mazza, G.; Cottrell, T. Carotenoids and cyanogenic glucosides in Saskatoon berries (Amelanchier alnifolia Nutt.). J. Food Compos. Anal. 2008, 21, 249–254. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Sochor, J.; Kizek, R. Antioxidant properties of saskatoon berry (Amelanchier alnifolia Nutt.) fruits. Fruits 2013, 68, 435–444. [Google Scholar] [CrossRef]
- Gut, M.; Gasik, A.; Mitek, M. Sea Buckthorn—A plant like a pharmacy. Food Ind. 2008, 6, 36–38. [Google Scholar]
- Park, Y.S.; Namiesnik, J.; Vearasilp, K.; Leontowicz, H.; Leontowicz, M.; Barasch, D.; Nemirovski, A.; Trakhtenberg, S.; Gorinstein, S. Bioactive compounds and the antioxidant capacity in new kiwi fruit cultivars. Food Chem. 2014, 165, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Mudgil, D.; Barak, S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: A review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lavola, A.; Karjalainen, R.; Julkunen-Tiitto, R. Bioactive polyphenols in leaves, stems, and berries of Saskatoon (Amelanchier alnifolia Nutt.) cultivars. J. Agric. Food Chem. 2012, 60, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, H.; Desjardins, Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Ozga, J.A.; Saeed, A.; Wismer, W.; Reinecke, D.M. Characterization of cyanidin-and quercetin-derived flavonoids and other phenolics in mature saskatoon fruits (Amelanchier alnifolia Nutt.). J. Agric. Food Chem. 2007, 55, 10414–10424. [Google Scholar] [CrossRef] [PubMed]
- Jin, A.L.; Ozga, J.A.; Kennedy, J.A.; Koerner-Smith, J.L.; Botar, G.; Reinecke, D.M. Developmental profile of anthocyanin, flavonol, and proanthocyanidin type, content, and localization in Saskatoon fruits (Amelanchier alnifolia Nutt.). J. Agric. Food Chem. 2015, 63, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, E1098. [Google Scholar] [CrossRef] [PubMed]
- Oszmiański, J.; Kolniak-Ostek, J.; Lachowicz, S.; Gorzelany, J.; Matłok, N. Effect of dried powder preparation process on polyphenolic content and antioxidant capacity of cranberry (Vaccinium macrocarpon L.). Ind. Crops Prod. 2015, 77, 658–665. [Google Scholar] [CrossRef]
- Delgado-Pelayo, R.; Gallardo-Guerrero, L.; Hornero-Méndez, D. Chlorophyll and carotenoid pigments in the peel and flesh of commercial apple fruit varieties. Food Res. Int. 2014, 65, 272–281. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Beta, T. Saskatoon and wild blueberries have higher anthocyanin contents than other Manitoba berries. J. Agric. Food Chem. 2007, 55, 10832–10838. [Google Scholar] [CrossRef] [PubMed]
- Ozga, J.A.; Saeed, A.; Reinecke, D.M. Anthocyanins and nutrient components of saskatoon fruits (Amelanchier alnifolia Nutt.). Can. J. Plant Sci. 2006, 86, 193–197. [Google Scholar] [CrossRef]
- Zizkova, P.; Stefek, M.; Rackova, L.; Prnova, M.; Lubica, H. Novel quercetin derivatives: From redox properties to promising treatment of oxidative stress related diseases. Chem.-Biol. Interact. 2017, 256, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Loza-Mejía, M.A.; Salazar, J.R. Sterols and triterpenoids as potential anti-inflammatories: Molecular docking studies for binding to some enzymes involved in inflammatory pathways. J. Mol. Graph. Model. 2015, 62, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Szakiel, A.; Pączkowski, C.; Pensec, F.; Bertsch, C. Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochem. Rev. 2012, 11, 263–284. [Google Scholar] [CrossRef] [PubMed]
- Jetter, R.; Kunst, L.; Samuels, A.L. Composition of plant cuticular waxes. Biol. Plant Cuticle 2008, 23, 145–181. [Google Scholar]
- Szakiel, A.; Pączkowski, C.; Koivuniemi, H.; Huttunen, S. Comparison of the triterpenoid content of berries and leaves of lingonberry Vaccinium vitis-idaea from Finland and Poland. J. Agric. Food Chem. 2012, 60, 4994–5002. [Google Scholar] [CrossRef] [PubMed]
- Pumilia, G.; Cichon, M.J.; Cooperstone, J.L.; Giuffrida, D.; Dugo, G.; Schwartz, S.J. Changes in chlorophylls, chlorophyll degradation products and lutein in pistachio kernels (Pistacia vera L.) during roasting. Food Res. Int. 2014, 65, 193–198. [Google Scholar] [CrossRef]
- Biswas, A.K.; Sahoo, J.; Chatli, M.K. A simple UV-Vis spectrophotometric method for determination of β-carotene content in raw carrot, sweet potato and supplemented chicken meat nuggets. LWT Food Sci. Technol. 2011, 44, 1809–1813. [Google Scholar] [CrossRef]
- Hu, C.; Kwok, B.H.L.; Kitts, D.D. Saskatoon berries (Amelanchier alnifolia Nutt.) scavenge free radicals and inhibit intracellular oxidation. Food Res. Int. 2005, 38, 1079–1085. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A.; Lachowicz, S. Effect of dried powder preparation process on polyphenolic content and antioxidant activity of blue honeysuckle berries (Lonicera caerulea L. var. kamtschatica). LWT Food Sci. Technol. 2016, 67, 214–222. [Google Scholar] [CrossRef]
- Lin, C.H.; Chen, B.H. Determination of carotenoids in tomato juice by liquid chromatography. J. Chromatogr. A 2003, 1012, 103–109. [Google Scholar] [CrossRef]
- Delpino-Rius, A.; Eras, J.; Marsol-Vall, A.; Vilaró, F.; Balcells, M.; Canela-Garayoa, R. Ultra-performance liquid chromatography analysis to study the changes in the carotenoid profile of commercial monovarietal fruit juices. J. Chromatogr. A 2014, 1331, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Farneti, B.; Masuero, D.; Costa, F.; Magnago, P.; Malnoy, M.; Costa, G.; Vrhovsek, U.; Mattivi, F. Is there room for improving the nutraceutical composition of apple? J. Agric. Food Chem. 2015, 63, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, S.; Kolniak-Ostek, J.; Oszmiański, J.; Wiśniewski, R. Comparison of Phenolic Content and Antioxidant Capacity of Bear Garlic (Allium ursinum L.) in Different Maturity Stages. J. Food Proc. Preserv. 2017, 41. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the phytochemical composition and antioxidant capacity of seven genotypes of Sankatoon berry. |
Chemical Compounds | Honeywood | Martin | Pembina | Smoky | Clone No. 5/6 | Clone Type N | Clone Type S |
---|---|---|---|---|---|---|---|
Dry substance (g/100 g) 1 | 22.12 ± 0.20c 2 | 20.8 ± 0.19cde | 29.59 ± 0.27a | 22.44 ± 0.20c | 19.11 ± 0.17def | 26.73 ± 0.24b | 21.46 ± 0.19cd |
Total acidity (g/100 g) 1 | 0.41 ± 0.00ab | 0.57 ± 0.01ab | 0.45 ± 0.00ab | 0.44 ± 0.00ab | 0.64 ± 0.01a | 0.43 ± 0.00ab | 0.37 ± 0.00ab |
pH | 3.78 ± 0.03ab | 3.71 ± 0.03ab | 3.02 ± 0.03ab | 3.95 ± 0.04ab | 3.99 ± 0.04a | 3.65 ± 0.03ab | 3.81±0.03ab |
Pectins (%) 1 | 0.95 ± 0.01a | 0.73 ± 0.01a | 0.67 ± 0.01a | 0.71 ± 0.01a | 0.93 ± 0.01a | 1.20 ± 0.01a | 1.33 ± 0.01a |
Ash (%) 1 | 1.11 ± 0.01a | 0.84 ± 0.01a | 0.71 ± 0.01a | 0.91 ± 0.01a | 0.61 ± 0.01a | 1.03 ± 0.01a | 1.14 ± 0.01a |
Fructose (g/100g·dm) 1 | 6.83 ± 0.06ab | 4.94 ± 0.04bc | 5.08 ± 0.05abc | 4.94 ± 0.04bc | 3.14 ± 0.03d | 6.07 ± 0.05ab | 7.29 ± 0.07a |
Sorbitol (g/100 g·dm) 1 | 2.25 ± 0.02a | 2.41 ± 0.02a | 1.84 ± 0.02a | 3.37 ± 0.03a | 1.80 ± 0.02a | 2.19 ± 0.02a | 2.49 ± 0.02a |
Glucose (g/100 g·dm) 1 | 7.38 ± 0.07ab | 2.50 ± 0.02c | 6.18 ± 0.06b | 7.16 ± 0.06ab | 3.35 ± 0.03c | 8.76 ± 0.08a | 9.30 ± 0.08a |
Sucrose (g/100 g·dm) 1 | 0.48 ± 0.00a | 0.57 ± 0.01a | 0.59 ± 0.01a | 0.52 ± 0.00a | 0.72 ± 0.01a | 0.66 ± 0.01a | 0.61 ± 0.01a |
Σ sugar | 16.95 ± 3.40b | 10.42 ± 1.79d | 13.69 ± 2.64c | 15.99 ± 2.79b | 9.02 ± 1.23d | 17.68 ± 3.68ab | 19.69 ± 4.05a |
Rt (min) | MS [H − M]−/[H − M]+ | MS/MS Fragments (m/z) | Honeywood | Martin | Pembina | Smoky | Clone No. 5/6 | Clone Type N | Clone Type S | |
---|---|---|---|---|---|---|---|---|---|---|
Anthocyanins | ||||||||||
Cyanidin-3-O-galactoside 3 | 5.79 | 449.1685+ | 287.2555 | 1148.97 ± 4.02b | 639.73 ± 2.24e | 458.26 ± 1.60f | 1107.16 ± 3.88c | 461.06 ± 1.61fg | 1013.49±3.55d | 1219.07 ± 4.26a |
Cyanidin-3-O-glucoside 3 | 6.27 | 449.1685+ | 287.2451 | 524.18 ± 1.83ab | 291.86 ± 1.02d | 209.07 ± 0.73f | 505.11 ± 1.77b | 210.34 ± 0.74e | 462.37 ± 1.62c | 556.16 ± 1.94a |
Cyanidin-3-O-arabinoside 3 | 6.63 | 419.1101+ | 287.2451 | 196.24 ± 0.69b | 109.26 ± 0.38e | 78.27 ± 0.27f | 189.10 ± 0.66c | 78.75 ± 0.28f | 173.10 ± 0.61cd | 208.22 ± 0.72a |
Cyanidin-3-O-xyloside 3 | 7.75 | 419.1722+ | 287.257 | 131.94 ± 0.46b | 73.46 ± 0.26e | 52.62 ± 0.18f | 127.14 ± 0.44c | 52.94 ± 0.19fg | 116.38 ± 0.41d | 139.99 ± 0.48a |
Σ Anthocyanins | 2001.32 ± 304.42b 2 | 1114.31 ± 363.17e | 798.22 ± 286.46g | 1928.50 ± 418.90c | 803.10 ± 248.58f | 1765.32 ± 411.75d | 2123.43 ± 442.23a | |||
Phenolic acid | ||||||||||
Protocatechuic acid 4 | 3.22 | 153.3815 | 109.6529 | 3.75±0.03ab | 2.13±0.02bc | 2.25±0.02bc | 5.37±0.05a | 1.69±0.02bc | 2.99 ± 0.03bc | 2.29 ± 0.02bc |
Neochlorogenic acid 3 | 3.53 | 353.236 | 191.3855 | 181.02±1.63b | 76.77±0.69d | 52.50±0.47e | 183.85±1.65a | 175.76±1.58c | 177.18 ± 1.59c | 182.42 ± 1.64ab |
p-hydroxybenzoic acid 4 | 4.00 | 137.4283 | 93.4301 | 52.06 ± 0.47a | 13.96 ± 0.13e | 33.43 ± 0.30c | 47.20 ± 0.42b | 6.27 ± 0.06f | 53.73 ± 0.48a | 30.38 ± 0.27d |
Chlorogenic acid 3 | 4.74 | 353.9997 | 191.0571 | 770.00 ± 7.04b | 384.55 ± 3.53f | 140.01 ± 1.38g | 655.63 ± 5.98d | 501.27 ± 4.61e | 670.00 ± 6.11c | 872.10 ± 7.96a |
Galic acid 4 | 4.78 | 169.3998 | 125.0691 | 11.95 ± 0.09c | 8.21 ± 0.05g | 13.19 ± 0.10a | 9.31 ± 0.07e | 10.87 ± 0.08d | 9.03 ± 0.04ef | 12.45 ± 0.05b |
Cryptochlorogenic acid 3 | 5.05 | 353.236 | 191.3855 | 85.42 ± 0.77b | 39.19 ± 0.35d | 45.50 ± 0.41c | 90.85 ± 0.82a | 32.98 ± 0.30e | 39.62 ± 0.36d | 87.16 ± 078b |
4-caffeoylquinic acid 3 | 6.10 | 353.1907 | 173.4518 | 47.87 ± 0.17 | 21.00 ± 0.07 | 27.53 ± 0.10 | 49.07 ± 0.17 | 35.31 ± 0.12 | 33.89 ± 0.12 | 15.53 ± 0.05 |
Caffeic acid glucoside 4 | 7.53 | 341.2219 | 179.3838 | 40.09 ± 0.15 | 17.59 ± 0.06 | 23.05 ± 0.08 | 41.09 ± 0.14 | 29.57 ± 0.10 | 28.38 ± 0.10 | 13.00 ± 0.04 |
Dicaffeic acid 3 | 8.34 | 353.9997 | 191.0996 | 2.96 ± 0.01 | 1.30 ± 0.00 | 1.70 ± 0.01 | 3.03 ± 0.01 | 2.18 ± 0.03 | 2.10 ± 0.01 | 0.96 ± 0.00 |
Σ Phenolic acids | 1195.12 ± 291.36b | 564.70 ± 148.55f | 339.15 ± 50.95g | 1085.40 ± 244.45c | 795.91 ± 196.59e | 1016.92 ± 256.41d | 1216.29 ± 340.16a | |||
Flavonols | ||||||||||
Kampferol-3-galactoside 3 | 6.03 | 447.2142 | 285.2469 | 44.92 ± 0.40a | 19.12 ± 0.18c | 18.62 ± 0.17c | 45.54 ± 0.41a | 19.35 ± 0.20c | 44.59 ± 0.40a | 41.04 ± 0.37b |
Quercetin-3-O-arabinoglucoside 4 | 8.74 | 595.1489 | 301.2311 | 28.42 ± 0.10 | 14.78 ± 0.05 | 10.33 ± 0.04 | 25.98 ± 0.09 | 16.98 ± 0.06 | 23.91 ± 0.08 | 30.32 ± 0.10 |
Quercetin-3-O-rutinoside 3 | 9.15 | 609.1181 | 301.2352 | 39.54 ± 0.14 | 20.56 ± 0.07 | 14.37 ± 0.05 | 36.14 ± 0.13 | 23.62 ± 0.08 | 33.26 ± 0.12 | 42.18 ± 0.15 |
Quercetin-3-O-galactoside 3 | 9.36 | 463.1486 | 301.2321 | 209.57 ± 0.73 | 109.00 ± 0.38 | 76.16 ± 0.27 | 191.57 ± 0.67 | 125.22 ± 0.44 | 176.29 ± 0.62 | 223.58 ± 0.78 |
Quercetin-3-O-glucoside † | 9.61 | 463.1398 | 301.2286 | 21.66 ± 0.08 | 11.26 ± 0.04 | 7.87 ± 0.03 | 19.80 ± 0.07 | 12.94 ± 0.05 | 18.22 ± 0.06 | 23.10 ± 0.08 |
Quercetin-3-O-rabinobioside 4 | 9.82 | 609.9368 | 301.2037 | 14.78 ± 0.05 | 7.69 ± 0.03 | 5.37 ± 0.02 | 13.51 ± 0.05 | 8.83 ± 0.03 | 12.43 ± 0.04 | 15.77 ± 0.05 |
Quercetin-3-O-arabinoside 3 | 9.89 | 433.0698 | 301.0972 | 8.35 ± 0.03 | 4.34 ± 0.04 | 3.03 ± 0.01 | 7.63 ± 0.03 | 4.99 ± 0.02 | 7.02 ± 0.02 | 8.91 ± 0.03 |
Quercetin-3-O-xyloside 3 | 10.01 | 433.1374 | 301.225 | 7.16 ± 0.03 | 3.73 ± 0.01 | 2.60 ± 0.01 | 6.55 ± 0.02 | 4.28 ± 0.02 | 6.03 ± 0.02 | 7.64 ± 0.02 |
Quercetin-deoxyhexo-hexoside 3 | 10.29 | 609.108 | 301.257 | 7.85 ± 0.03 | 4.08 ± 0.01 | 2.85 ± 0.01 | 7.18 ± 0.03 | 4.69 ± 0.01 | 6.61 ± 0.02 | 8.38 ± 0.02 |
Σ Flavonols | 382.25 ± 206.77b | 194.57 ± 110.54f | 141.20 ± 73.51g | 353.89 ± 185.83c | 220.90 ± 128.83e | 328.35 ± 169.12d | 400.91 ± 225.45a | |||
Flavan-3-ols | ||||||||||
A-type procyanidin dimer 3 | 4.34 | 575.168 | 289.2398 | 22.81 ± 0.08 | 31.07 ± 0.11 | 46.41 ± 0.16 | 44.91 ± 0.16 | 21.46 ± 0.08 | 25.26 ± 0.09 | 24.85 ± 0.08 |
(+)-Catechin 3 | 5.48 | 289.111 | 18.70 ± 0.07 | 25.47 ± 0.09 | 38.05 ± 0.13 | 36.82 ± 0.13 | 17.59 ± 0.06 | 20.71 ± 0.07 | 20.37 ± 0.07 | |
B-type procyjanidyn dimer 3 | 5.55 | 577.2162 | 407.1907/289.0727 | 2.75 ± 0.01 | 3.75 ± 0.01 | 5.60 ± 0.02 | 5.42 ± 0.02 | 2.59 ± 0.01 | 3.05 ± 0.01 | 3.00 ± 0.01 |
(−)-Epicatechin 3 | 6.57 | 289.2816 | 82.13 ± 0.29 | 111.84 ± 0.39 | 167.08 ± 0.59 | 161.67 ± 0.51 | 77.25 ± 0.27 | 90.94 ± 0.32 | 89.45 ± 0.32 | |
B-type procyjanidyn trimer 4 | 7.22 | 865.0563 | 577.1276/287.3700 | 19.51 ± 0.07 | 26.57 ± 0.09 | 39.69 ± 0.14 | 38.40 ± 0.13 | 18.35 ± 0.06 | 21.60 ± 0.08 | 21.25 ± 0.07 |
B-type procyjanidyn tetramer 4 | 7.53 | 1153.077 | 865.1967/577.1158/287.2398 | 36.15 ± 0.13 | 49.23 ± 0.17 | 73.5 ± 0.26 | 71.16 ± 0.20 | 34.00 ± 0.12 | 40.02 ± 0.14 | 39.37 ± 0.13 |
A-type procyanidin trimer 4 | 7.60 | 863.168 | 575.1267/289.2467 | 36.46 ± 0.14 | 49.65 ± 0.10 | 74.18 ± 0.21 | 71.77 ± 0.15 | 34.30 ± 0.10 | 40.37 ± 0.10 | 39.71 ± 0.14 |
Polymeric procyanidin | 2563.72 ± 23.07a | 1602.79 ± 14.43e | 1269.23 ± 11.42f | 2259.02 ± 20.33d | 1189.76 ± 10.71g | 2480.65 ± 22.33b | 2411.73 ± 23.69c | |||
Σ Flavan-3-ols | 2782.24 ± 1658.31a | 1900.36 ± 922.93e | 1713.78 ± 583.14f | 2689.17 ± 1293.21d | 1395.30 ± 695.95g | 2722.60 ± 1583.00b | 2649.73 ± 1537.19c | |||
Σ Polyphenolic compounds | 6360.93 ± 57.25b | 3773.94 ± 52.96e | 2992.35 ± 26.93g | 6056.96 ± 54.51c | 3215.21 ± 28.94f | 5833.20 ± 52.50d | 6390.36 ± 57.51a |
Chemical Compounds | Rt (min) | MS [H − M]−/[H − M]+ | MS/MS Fragments (m/z) | Honeywood | Martin | Pembina | Smoky | Clone No. 5/6 | Clone Type N | Clone Type S |
---|---|---|---|---|---|---|---|---|---|---|
Carotenoids | ||||||||||
Zeaxanthin | 4.66 | 601.0521 | 2.19 ± 0.02c 2 | 3.94 ± 0.04abc | 3.01 ± 0.03bc | 4.72 ± 0.04ab | 2.83 ± 0.03bc | 4.93 ± 0.04ab | 5.32 ± 0.05a | |
all-trans-lutein | 5.11 | 568.0021 | 551.1608/553.1281 | 165.60 ± 1.53b | 153.16 ± 1.42d | 146.96 ± 1.36e | 164.70 ± 1.52b | 141.78 ± 1.31f | 162.49 ± 1.50c | 168.99 ± 1.56a |
13-cis-lutein | 5.21 | 568.0261 | 551.1872/553.1023 | 4.65 ± 0.09c | 4.30 ± 0.01e | 4.13 ± 0.05g | 4.62 ± 0.02d | 3.98 ± 0.02f | 4.56 ± 0.01b | 4.75 ± 0.03a |
β-carotene | 8.72 | 537.1452 | 445.0571 | 344.23 ± 3.10c | 336.71 ± 3.03e | 324.52 ± 2.92g | 340.32 ± 3.06d | 330.98 ± 2.98f | 380.21 ± 3.42b | 382.51 ± 3.44a |
Σ Carotenoids | 516.67 ± 171.03c | 498.11 ± 166.55e | 478.62 ± 160.92g | 514.36 ± 167.81d | 479.57 ± 164.53f | 552.19 ± 188.22b | 561.57 ± 188.95a | |||
Chlorophylls | ||||||||||
Chlorophyll b | 7.30 | 907.1181 | 629.5560 | 39.81 ± 0.36e | 27.76 ± 0.25f | 56.12 ± 0.51a | 23.04 ± 0.21g | 54.12 ± 0.49ab | 46.23 ± 0.42c | 42.01 ± 0.38d |
Pheophytin a | 8.30 | 871.1362 | 593.2734/533.1276 | 47.12 ± 0.42d | 52.34 ± 0.47b | 49.46 ± 0.45c | 48.16 ± 0.43cd | 61.03 ± 0.55a | 48.37 ± 0.44cd | 51.98 ± 0.47b |
Σ Chlorophylls | 86.93 ± 5.17d | 80.10 ± 17.38e | 105.58 ± 4.71b | 71.20 ± 17.76f | 115.15 ± 4.89a | 94.6 ± 1.51c | 93.99 ± 7.05c | |||
Triterpenoids | ||||||||||
Betulinic acid | 6.89 | 455.3452− | 11.62 ± 0.10a | 7.45 ± 0.07cde | 6.92 ± 0.06de | 9.09 ± 0.08bcd | 6.67 ± 0.06e | 9.31 ± 0.08bc | 10.84 ± 0.10ab | |
Oleanolic acid | 7.58 | 455.3496− | 71.03 ± 0.64c | 57.83 ± 0.52f | 56.02 ± 0.50f | 64.92 ± 0.58d | 62.94 ± 0.57de | 73.14 ± 0.66b | 75.38 ± 0.68a | |
Ursolic acid | 8.19 | 455.3365− | 6.19 ± 0.06a | 3.68 ± 0.03bcd | 3.61 ± 0.03bcd | 3.95 ± 0.04abcd | 2.60 ± 0.02cd | 4.71 ± 0.04abc | 5.09 ± 0.05ab | |
Σ Triterpenoids | 88.84 ± 35.97b | 68.96 ± 30.23e | 66.55 ± 29.35f | 77.96 ± 33.82c | 72.21 ± 33.72d | 87.16 ± 38.25b | 91.31 ± 39.03a |
Polyphenolic Compounds | The Ability to Reduce Free Radical (ABTS) | Ferric Reducing Ability of Plasma (FRAP) |
---|---|---|
Betulinic acid | 0.848 | 0.824 |
Oleanolic acid | 0.840 | 0.827 |
Ursolic acid | 0.713 | 0.452 |
Σ Triterpenoids | 0.884 | 0.860 |
Σ Anthocyanins | 0.932 | 0.915 |
Σ Phenolic acids | 0.825 | 0.793 |
Σ Flavonols | 0.882 | 0.857 |
Σ Flavan-3-ols | −0.543 | −0.551 |
Polymeric procyanidin | 0.957 | 0.935 |
Σ Phenolic compounds | 0.925 | 0.900 |
Chlorophyll | −0.573 | −0.563 |
Β-caroten | 0.809 | 0.841 |
Zeaxanthin | 0.496 | 0.599 |
Luteina | 0.943 | 0.939 |
Σ Carotenoid compounds | 0.905 | 0.928 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lachowicz, S.; Oszmiański, J.; Seliga, Ł.; Pluta, S. Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland. Molecules 2017, 22, 853. https://doi.org/10.3390/molecules22050853
Lachowicz S, Oszmiański J, Seliga Ł, Pluta S. Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland. Molecules. 2017; 22(5):853. https://doi.org/10.3390/molecules22050853
Chicago/Turabian StyleLachowicz, Sabina, Jan Oszmiański, Łukasz Seliga, and Stanisław Pluta. 2017. "Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland" Molecules 22, no. 5: 853. https://doi.org/10.3390/molecules22050853
APA StyleLachowicz, S., Oszmiański, J., Seliga, Ł., & Pluta, S. (2017). Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland. Molecules, 22(5), 853. https://doi.org/10.3390/molecules22050853