CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.2. Characterization
2.3. Photocatalytic Activity Test
3. Results and Discussion
3.1. Structure and Morphology
3.2. UV-Vis DRS Analysis
3.3. BET Surface Area Analysis
3.4. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, H.L.; Zhang, L.S.; Chen, Z.G.; Hu, J.Q.; Li, S.J.; Wang, Z.H.; Liu, J.S.; Wang, X.C. Semiconductor heterojunction photocatalysts design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5245. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.C.; Vu, N.N.; Do, T.-O. Recent advances in the development of sunlight driven hollow structure photocatalysts and their applications. J. Mater. Chem. 2015, 3, 18345–18359. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Xu, Y.J. Bi2WO6: A highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Adv. 2014, 4, 2904–2910. [Google Scholar] [CrossRef]
- Lee, W.W.-L.; Huang, S.T.; Chang, J.L.; Chen, J.Y.; Cheng, M.C.; Chen, C.C. Photodegradation of CV over nanocrystalline bismuth tungstate prepared by hydrothermal synthesis. J. Mol. Catal. A Chem. 2012, 361–362, 80–90. [Google Scholar] [CrossRef]
- Liao, B.Y.-H.; Wang, J.X.; Lin, J.S.; Chung, W.H.; Lin, W.Y.; Chen, C.C. Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye. Catal. Today 2011, 174, 148–159. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Wang, Y.J.; Ling, Q.; Zhu, Y.F. Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl. Catal. B Environ. 2017, 200, 222–229. [Google Scholar] [CrossRef]
- Huang, Y.K.; Kang, S.F.; Yang, Y.; Qin, H.F.; Ni, Z.J.; Yang, S.J.; Li, X. Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light. Appl. Catal. B Environ. 2016, 196, 89–99. [Google Scholar] [CrossRef]
- Fu, H.B.; Zhang, L.W.; Yao, W.Q.; Zhu, Y.F. Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process. Appl. Catal. B Environ. 2006, 66, 100–110. [Google Scholar] [CrossRef]
- Chen, Z.; Qian, L.W.; Zhu, J.; Yuan, Y.P.; Qian, X.F. Controlled synthesis of hierarchical Bi2WO6 microspheres with improved visible-light-driven photocatalytic activity. CrystEngComm 2010, 12, 2100–2106. [Google Scholar] [CrossRef]
- Wang, X.J.; Chang, L.L.; Wang, J.R.; Song, N.N.; Liu, H.L.; Wan, X.L. Facile hydrothermal synthesis of Bi2WO6 microdiscs with enhanced photocatalytic activity. Appl. Surf. Sci. 2013, 270, 685–689. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Zhang, Y.F.; Lin, M.S.; Long, J.L.; Zhang, Z.Z.; Lin, H.X.; Wu, J.C.-S.; Wang, X.X. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat. Commun. 2015, 6, 8340–8347. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Tian, Z.P.; Zhao, Z.Y.; Liu, Q.; Kou, J.H.; Chen, X.Y.; Gao, J.; Yan, S.C.; Zou, Z.G.; Yan, S.C.; et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light. ACS Appl. Mater. Interfaces 2011, 3, 3594–3601. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Lei, F.C.; Gao, S.; Sun, Y.F.; Jiao, X.C.; Wu, J.; Qamar, S.; Xie, Y. Single unit cell bismuth tungstate layers realizing robust solar CO2 reduction to methanol. Angew. Chem. Int. Ed. 2015, 54, 13971–13974. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wang, M.; Lin, L.; Zeng, Q.Q.; He, D.N. Synthesis of parallel squared nanosheet-assembled Bi2WO6 microstructures under alkalescent hydrothermal treatment. Ceram. Int. 2014, 40, 5831–5835. [Google Scholar] [CrossRef]
- Zheng, H.S.; Guo, W.Q.; Li, S.; Yin, R.L.; Wu, Q.L.; Feng, X.C.; Ren, N.Q.; Chang, J.S. Surfactant (CTAB) assisted flower-like Bi2WO6 through hydrothermal method: Unintentional bromide ion doping and photocatalytic activity. Catal. Commun. 2017, 88, 68–72. [Google Scholar] [CrossRef]
- Wang, D.J.; Guo, L.; Zhen, Y.Z.; Yue, L.L.; Xue, G.L.; Fu, F. AgBr quantum dots decorated mesoporous Bi2WO6 architectures with enhanced photocatalytic activities for methylene blue. J. Mater. Chem. 2014, 2, 11716–11727. [Google Scholar] [CrossRef]
- Yu, J.G.; Low, J.X.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L.S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Chen, X.M.; Du, X.W. Facile synthesis of three dimensional CdS nanoflowers with high photocatalytic performance. J. Alloy. Compd. 2016, 656, 972–977. [Google Scholar] [CrossRef]
- Xu, C.Q.; Wu, H.H.; Gu, F.L. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites. J. Hazard. Mater. 2014, 275, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Penn, R.L.; Banfield, J.F. Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals. Science 1998, 287, 969–971. [Google Scholar] [CrossRef]
- Nie, Z.P.; Ma, D.K.; Fang, G.Y.; Chen, W.; Huang, S.M. Concave Bi2WO6 nanoplates with oxygen vacancies achieving enhanced electrocatalytic oxygen evolution in near-neutral water. J. Mater. Chem. 2016, 4, 2438–2444. [Google Scholar] [CrossRef]
- Kudo, A.; Tsuji, I.; Kato, H. AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. Chem. Commun. 2002, 17, 1958–1959. [Google Scholar] [CrossRef]
- Dai, X.J.; Luo, Y.S.; Zhang, W.D.; Fu, S.Y. Facile hydrothermal synthesis and photocatalytic activity of bismuth tungstate hierarchical hollow spheres with an ultrahigh surface area. Dalton Trans. 2010, 39, 3426–3432. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.J.; Xue, G.L.; Zhen, Y.Z.; Fu, F.; Li, D.S. Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities. J. Mater. Chem. 2012, 22, 4751–4758. [Google Scholar] [CrossRef]
- Sing, K.S.Y.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the retermination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Liu, S.J.; Hou, Y.F.; Zheng, S.L.; Zhang, Y.; Wang, Y. One-dimensional hierarchical Bi2WO6 hollow tubes with porous walls: Synthesis and photocatalytic property. Cryst. Eng. Comm. 2013, 15, 4124–4130. [Google Scholar] [CrossRef]
- Tang, J.W.; Zou, Z.G.; Ye, J.H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett. 2004, 92, 53–56. [Google Scholar] [CrossRef]
- McEvoy, J.G.; Zhang, Z.S. Synthesis and characterization of magnetically separable Ag/AgCl-magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection. Appl. Catal. B Environ. 2014, 160–161, 267–278. [Google Scholar] [CrossRef]
- Li, B.X.; Shao, X.K.; Liu, T.X.; Shao, L.Z.; Zhang, B.S. Construction of metal/WO2.72/rGO ternary nanocomposites with optimized adsorption, photocatalytic and photoelectrochemical properties. Appl. Catal. B Environ. 2016, 198, 325–333. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, K.; Xiao, X.Y.; Zhang, L.Z. Synthesis and facet-dependent photo reactivity of BiOCl single crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.X.; Zhang, Y.H.; Li, M.; Du, X.; Huang, H.W. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity. Appl. Surf. Sci. 2017, 391, 491–498. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Lv, P.; Meng, X.; Tang, Y.; Huang, P.; Chen, X.; Shen, X.; Zeng, X. CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance. Molecules 2017, 22, 859. https://doi.org/10.3390/molecules22050859
Zhou Y, Lv P, Meng X, Tang Y, Huang P, Chen X, Shen X, Zeng X. CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance. Molecules. 2017; 22(5):859. https://doi.org/10.3390/molecules22050859
Chicago/Turabian StyleZhou, Yuxue, Pengfei Lv, Xiangdong Meng, Yanping Tang, Pingping Huang, Xiaobing Chen, Xiaoshuang Shen, and Xianghua Zeng. 2017. "CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance" Molecules 22, no. 5: 859. https://doi.org/10.3390/molecules22050859
APA StyleZhou, Y., Lv, P., Meng, X., Tang, Y., Huang, P., Chen, X., Shen, X., & Zeng, X. (2017). CTAB-Assisted Fabrication of Bi2WO6 Thin Nanoplates with High Adsorption and Enhanced Visible Light-Driven Photocatalytic Performance. Molecules, 22(5), 859. https://doi.org/10.3390/molecules22050859