Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Support
2.2. Direct Reduction Method
2.3. Reduction Teamperature
2.4. Additive
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Reaction
4. Conclusions
- The support affects the catalytic performance of supported Ni catalysts by providing original acid sites, which promote the condensation side reactions and decrease the selectivity to primary amines. SiO2 is chosen as the support in this work providing less original acid sites.
- The catalyst prepared by the direct reaction method, without a prior calcination step, gave smaller Ni particles, this is, a higher Ni dispersion and H2 uptake capacity, which improved the catalytic activity and inhibited the intermolecular condensation side reaction.
- The reduction temperature had an appreciable effect on the catalytic performance of NiDR/SiO2. 450 °C was regarded as a preferable temperature to suppress the intramolecular condensation reaction to HMI.
- The addition of NaOH into the reaction system improved the hydrogenation activity and significantly improved the target products selectivity. When the NaOH/Ni mass ratio was increased to 0.5, the selectivity to primary amines attained 94%.
Author Contributions
Conflicts of Interest
References
- Dahlhoff, G.; Niederer, J.P.M.; Hoelderich, W.F. Epsilon-Caprolactam: New by-product free synthesis routes. Catal. Rev. Sci. Eng. 2001, 43, 381–441. [Google Scholar] [CrossRef]
- Tolman, C.A.; Mckinney, R.J.; Seidel, W.C.; Druliner, J.D.; Stevens, W.R. Homogeneous Nickel-Catalyzed Olefin Hydrocyanation. Adv. Catal. 1985, 33, 1–46. [Google Scholar] [CrossRef]
- Brunelle, J.; Seigneurin, A.; Sever, L. Method for Cyclizing Hydrolysis of an Aminonitrile Compound into Lactam. U.S. Patent 6479658B1, 12 November 2002. [Google Scholar]
- Leconte, P. Process for Preparing Lactams. U.S. Patent 20120095212A1, 19 April 2012. [Google Scholar]
- Ziemecki, S.B. Selective Low Pressure Hydrogenation of a Dinitrile to an Aminonitrile. U.S. Patent 5151543A, 29 September 1992. [Google Scholar]
- Boschat, V.; Brunelle, J.P.; Darrier, B.; Chevaljer, B.; Bobet, J.L. Hemihydrogenation Method for Dinitriles. U.S. Patent 6521779B1, 18 February 2003. [Google Scholar]
- Ziemecki, S.B.; Ionkin, A.S. Aminonitrile Production. U.S. Patent 6080884A, 27 June 2000. [Google Scholar]
- Liao, H.; Liu, S.; Hao, F.; Liu, P.; You, K.; Liu, D.; Luo, H. Liquid phase hydrogenation of adiponitrile to 6-aminocapronitrile and hexamethylenediamine over potassium doped Ni/alpha-Al2O3 catalyst. React. Kinet. Mech. Catal. 2013, 109, 475–488. [Google Scholar] [CrossRef]
- Chen, B.; Dingerdissen, U.; Krauter, J.G.E.; Rotgerink, H.G.J.L.; Mobus, K.; Ostgard, D.J.; Panster, P.; Riermeier, T.H.; Seebald, S.; Tacke, T. New developments in hydrogenation catalysis particularly in synthesis of fine and intermediate chemicals. Appl. Catal. A Gen. 2005, 280, 17–46. [Google Scholar] [CrossRef]
- Tichit, D.; Durand, R.; Rolland, A.; Coq, B.; Lopez, J.; Marion, P. Selective half-hydrogenation of adiponitrile to aminocapronitrile on Ni-based catalysts elaborated from lamellar double hydroxide precursors. J. Catal. 2002, 211, 511–520. [Google Scholar] [CrossRef]
- Hoffer, B.W.; Moulijn, J.A. Hydrogenation of dinitriles on Raney-type Ni catalysts: Kinetic and mechanistic aspects. Appl. Catal. A Gen. 2009, 352, 193–201. [Google Scholar] [CrossRef]
- Jia, Z.; Zhen, B.; Han, M.; Wang, C. Liquid phase hydrogenation of adiponitrile over directly reduced Ni/SiO2 catalyst. Catal. Commun. 2016, 73, 80–83. [Google Scholar] [CrossRef]
- Verhaak, M.J.F.M. The selective hydrogenation of acetonitrile on supported nickel-catalysts. Catal. Lett. 1994, 26, 37–53. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Nakazawa, H.; Watanabe, H.; Tomishige, K. Total Hydrogenation of Furfural over a Silica-Supported Nickel Catalyst Prepared by the Reduction of a Nickel Nitrate Precursor. ChemCatChem 2012, 4, 1791–1797. [Google Scholar] [CrossRef]
- Li, H.X.; Xu, Y.P.; Li, H.; Deng, J.F. Gas-phase hydrogenation of adiponitrile with high selectivity to primary amine over supported Ni-B amorphous catalysts. Appl. Catal. A Gen. 2001, 216, 51–58. [Google Scholar] [CrossRef]
- Louis, C.; Cheng, Z.; Che, M. Charaterization of Ni/SiO2 catalysts during impregnation and future thermal activation treatment leading to metal particles. J. Phys. Chem. 1993, 97, 5703–5712. [Google Scholar] [CrossRef]
- Braun, J.V.; Blessing, G.; Zobel, F. Katalytische hydrierungen unter druck bei gegenwart von nickelsalzen, VI: Nitrile. Berichte der Deutschen Chemischen Gesellschaft (A B Ser.) 1923, 56, 1988–2001. [Google Scholar] [CrossRef]
- Sanchez, K.M. Preparation of 6-Aminocapronitrile. U.S. Patent 5296628A, 22 March 1994. [Google Scholar]
- Huang, Y.Y.; Adeeva, V.; Sachtler, W.M.H. Stability of supported transition metal catalysts in the hydrogenation of nitriles. Appl. Catal. A Gen. 1991, 182, 365–378. [Google Scholar] [CrossRef]
- Balladur, V.; Fouilloux, P.; deBellefon, C. Monometallic Ni, Co and Ru, and bimetallic NiCr, NiTi and CoFe Ziegler-Sloan-Lapporte catalysts for the hydrogenation of adiponitrile into hexamethylenediamine: Effect of water and dopants. Appl. Catal. A Gen. 1995, 133, 367–376. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Specific Surface Area/m2g−1 | Pore Volume/cm3·g−1 | Average Pore Size/nm |
---|---|---|---|
Al2O3 | 242 | 0.64 | 9.9 |
Ni/Al2O3 | 175 | 0.41 | 9.5 |
SiO2 | 245 | 0.94 | 17.8 |
Ni/SiO2 | 190 | 0.72 | 17.4 |
Catalysts | Catalytic Activity/mol·kgcat−1·min−1 | Selectivity/% | |||
---|---|---|---|---|---|
ACN | HMD | HMI | Condensation Byproducts | ||
Ni/SiO2 | 0.25 | 50 | 4 | 9 | 37 |
Ni/Al2O3 | 0.29 | 43 | 4 | 8 | 45 |
Sample | Ni Particle Size(a) 1/nm | Ni Particle Size(b) 2/nm |
---|---|---|
NiCR/SiO2 | 19 | 17.7 |
NiDR/SiO2 | 7 | 6.4 |
Catalysts | Catalytic Activity/Mol·kgcat−1·min−1 | Selectivity/% | |||
---|---|---|---|---|---|
ACN | HMD | HMI | Condensation Byproducts | ||
NiCR/SiO2 | 0.25 | 50 | 4 | 9 | 37 |
NiDR/SiO2 | 0.50 | 66 | 13 | 18 | 3 |
NaOH/Ni | Catalytic Activity/mol·kgcat−1·min−1 | Selectivity/% | |||
---|---|---|---|---|---|
ACN | HMD | HMI | Condensation Byproducts | ||
0 | 0.39 | 55 | 12 | 21 | 12 |
0.1 | 0.50 | 66 | 13 | 18 | 3 |
0.3 | 0.56 | 70 | 21 | 7 | 2 |
0.5 | 0.63 | 70 | 24 | 5 | 1 |
Catalysts | Catalytic Activity/mol·kgcat−1·min−1 | Selectivity/% | |||
---|---|---|---|---|---|
ACN | HMD | HMI | Condensation Byproducts | ||
Raney Ni | 0.61 | 78 | 17 | 1 | 4 |
NiDR/SiO2 | 0.63 | 70 | 24 | 5 | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Jia, Z.; Zhen, B.; Han, M. Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine. Molecules 2018, 23, 92. https://doi.org/10.3390/molecules23010092
Wang C, Jia Z, Zhen B, Han M. Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine. Molecules. 2018; 23(1):92. https://doi.org/10.3390/molecules23010092
Chicago/Turabian StyleWang, Chengqiang, Zekun Jia, Bin Zhen, and Minghan Han. 2018. "Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine" Molecules 23, no. 1: 92. https://doi.org/10.3390/molecules23010092
APA StyleWang, C., Jia, Z., Zhen, B., & Han, M. (2018). Supported Ni Catalyst for Liquid Phase Hydrogenation of Adiponitrile to 6-Aminocapronitrile and Hexamethyenediamine. Molecules, 23(1), 92. https://doi.org/10.3390/molecules23010092