Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators
Abstract
:1. Introduction
2. Model Structure and Theoretical Analysis
2.1. Geometric Structure of the Temperature Sensor
2.2. Theoretical Analysis
3. Simulation Analysis of Transmittance
4. Sensing Performance
4.1. Adjustment of the Ratio of Semi-Short Axis to Semi-Major Axis
4.2. Adjustment of the Width of the Rectangles
5. Filtering Performance
5.1. Optimization of the Ratio of Semi-Short Axis to Semi-Major Axis
5.2. Optimization of Width of the Rectangles
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zayats, A.V.; Smolyaninov, I.I.; Maradudin, A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005, 408, 131–314. [Google Scholar] [CrossRef]
- Lin, X.S.; Huang, X.G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt. Lett. 2008, 33, 2874–2876. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.Q.; Li, T.; Li, L.; Wang, S.M.; Zhu, S.N. Mode division multiplexing in a polymer-loaded plasmonic planar waveguide. Opt. Lett. 2014, 39, 3900–3902. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Sun, C.; Li, H.; Gong, Q.H. Ultra-broadband unidirectional launching of surface plasmon polaritons by a double-slit structure beyond the diffraction limit. Nanoscale 2014, 6, 13487–13493. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface Plasmon Subwavelength Optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Link, S.; Halas, N.J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 213–220. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Anal. Bioanal. Chem. 1999, 377, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, S.K.; Turhan-Sayan, G. Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor. J. Lightw. Technol. 2003, 21, 805–814. [Google Scholar] [CrossRef]
- Wang, P.; Ding, M.; Bo, L.; Guan, C.Y.; Semenova, Y.; Wu, Q.; Farrell, G.; Brambilla, G. Fiber-tip high-temperature sensor based on multimode interference. Opt. Lett. 2013, 38, 4617–4620. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.J.; Chen, Y.; Xu, F.; Lu, Y.Q. Temperature sensor based on an isopropanol-sealed photonic crystal fiber in-line interferometer with enhanced refractive index sensitivity. Opt. Lett. 2012, 37, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Zhu, T.; Liu, M. A high temperature sensor based on a peanut-shape structure Michelson interferometer. Opt. Commun. 2012, 285, 5085–5088. [Google Scholar] [CrossRef]
- Kong, Y.; Qiu, P.; Wei, Q.; Quan, W.; Wang, S.Y.; Qian, W.Y. Refractive index and temperature nanosensor with plasmonic waveguide system. Opt. Commun. 2016, 371, 132–137. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Xu, W.; Zhao, W.L.; He, C. A Plasmonic Temperature-Sensing Structure Based on Dual Laterally Side-Coupled Hexagonal Cavities. Sensors 2016, 16, 706. [Google Scholar] [CrossRef] [PubMed]
- Al-Mahmod, M.J.; Hyder, R.; Islam, M.Z. Numerical Studies on a Plasmonic Temperature Nanosensor Based on a Metal-Insulator-Metal Ring Resonator Structure for Optical Integrated Circuit Applications. Photonics Nanostruct. Fundam. Appl. 2017, 25, 52–57. [Google Scholar] [CrossRef]
- Wu, T.; Liu, Y.; Yu, Z.; Peng, Y.W.; Shu, C.G.; He, H.F. The sensing characteristics of plasmonic waveguide with a single defect. Opt. Commun. 2014, 323, 44–48. [Google Scholar] [CrossRef]
- Yang, R.; Lu, Z.L. Subwavelength Plasmonic Waveguides and Plasmonic Materials. Int. J. Opt. 2012, 2012. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Xu, Q.; Li, S.H. A MIM Filter Based on a Side-Coupled Crossbeam Square-Ring Resonator. Plasmonics 2016, 11, 1–6. [Google Scholar] [CrossRef]
- Zhu, J.H.; Huang, X.G.; Tao, J.; Jin, X.P.; Mei, X. Nanometeric plasmonic refractive index senor. Opt. Commun. 2012, 285, 3242–3245. [Google Scholar] [CrossRef]
- Yun, B.; Hu, G.; Cui, Y. A nanometric plasmonic waveguide filter based on Fabry–Perot resonator. Opt. Commun. 2011, 284, 485–489. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Yu, Z.Y.; Wu, D.; Ma, R.; Zhang, Y.; Ye, H. Numerical analysis of a near-infrared plasmonic refractive index sensor with high figure of merit based on a fillet cavity. Opt. Express 2016, 24, 9975–9983. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, X.; Gong, Y.K.; Wang, L.R.; Mao, D. Multi-channel plasmonic waveguide filters with disk-shaped nanocavities. Opt. Commun. 2011, 284, 2613–2616. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Sundari, S.T.; Chandra, S.; Tyagi, A.K. Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations. J. Appl. Phys. 2013, 114. [Google Scholar] [CrossRef]
- Hou, J.; Lu, Q.; Peng, Y.; Lu, Q.S. Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber. Appl. Opt. 2012, 51, 6361–6367. [Google Scholar]
- Wu, D.; Zhao, Y.; Hu, H. Experimental research on FLM temperature sensor with an ethanol-filled photonic crystal fiber. Sens. Actuators A Phys. 2014, 209, 62–67. [Google Scholar] [CrossRef]
- Li, X.; Zhao, Y.; Zhou, X.; Cai, L. High sensitivity all-fiber sagnac interferometer temperature sensor using a selective ethanol-filled photonic crystal fiber. Instrum. Sci. Technol. 2018, 46, 253–264. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Refs | Structure | Temperature Range | Sensitivity |
---|---|---|---|
[9] | Optical fiber-tip | 0 °C–1200 °C | 11.4 pm/°C |
[10] | Isopropanol-sealed photonic crystal fiber | 23.7 °C–66.1 °C | −166 pm/°C |
[11] | Fusion-splicing a peanut-shape structure in fiber | 100 °C–900 °C | 0.1 nm/°C |
[12] | MIM waveguide with a transverse rectangular resonator | 250 K–600 K | 0.12 nm/K |
[13] | MIM waveguide with dual side-coupled hexagonal cavities | −100 °C–60 °C | 0.45 nm/°C |
[14] | MIM waveguide with ring resonator Structure | −114.3 °C–78 °C | −0.53 nm/°C |
[25] | Ethanol-filled photonic crystal fiber | 36 °C–55 °C | 0.8833 nm/°C |
[26] | a selective ethanol-filled photonic crystal fiber | 25 °C–33 °C | 1.65 nm/°C |
This study | MIM waveguide with ethanol-sealed asymmetric ellipse resonators | −100 °C–60 °C | −3.64 nm/°C |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Lou, J. Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators. Molecules 2018, 23, 2700. https://doi.org/10.3390/molecules23102700
Zhu J, Lou J. Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators. Molecules. 2018; 23(10):2700. https://doi.org/10.3390/molecules23102700
Chicago/Turabian StyleZhu, Jun, and Jian Lou. 2018. "Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators" Molecules 23, no. 10: 2700. https://doi.org/10.3390/molecules23102700
APA StyleZhu, J., & Lou, J. (2018). Ultrasensitive and Multifunction Plasmonic Temperature Sensor with Ethanol-Sealed Asymmetric Ellipse Resonators. Molecules, 23(10), 2700. https://doi.org/10.3390/molecules23102700