Ionic Exchange Resins and Hydrogels for Capturing Metal Ions in Selected Sweet Dessert Wines
Abstract
:1. Introduction
2. Results
2.1. The Content of Selected Nutrient Metals in Granello (GR) and Vin Santo (VSR) Dessert Wines
2.2. Assessing the Effect of Synthetic Hydrogels
2.3. Assessing the Effect of Ion Exchange Resins
2.4. Large Scale Study on L-207 Resin over Increasing Time
2.5. Effects of L-207 on Wine Character: pH and Color Index Indicator Parameters
3. Discussion
3.1. Stabilization of Metals in GR and VSR Dessert Wines
3.2. The Effect of Synthetic Hydrogels
3.3. The Effect of Ion Exchange Resins
4. Materials and Methods
4.1. Chemicals and Materials
4.2. Dessert Wine Samples
4.3. Color Index (CI) Determination
4.4. pH Determination
4.5. Metal Analysis via Atomic Absorption Spectrophotometry (AAS)
4.6. Hydrogels
4.6.1. Synthesis
4.6.2. Hydrogel Swelling
4.7. Metal Contents in Dessert Wines after Treatments by Synthetic Hydrogels and Commercial Resins
4.7.1. Treatments by Synthetic Hydrogels
4.7.2. Treatments by Lewatit-207 and Lewatit-208 Resins
4.7.3. Large-Scale Treatments by Lewatit-207 Resin
4.8. Statistical Data Treatment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Domizio, P.; Lencioni, L. Vin Santo. Adv. Food Nutr. Res. 2011, 63, 41–100. [Google Scholar] [PubMed]
- European Community, Commission Regulation (EC). No. 1512/2005 (15 September 2005) amending Regulation (EC) No. 753/2002 laying down certain rules for applying Council Regulation (EC) No. 1493/1999 as regards the description, designation, presentation and protection of certain wine sector products.
- Jackson, R.S. Wine Science, Principles and Applications, 4th ed.; Academic Press: New York, NY, USA, 2014; pp. 143–306. [Google Scholar]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; CBS Publishers and Distributors: New Delhi, India, 1997. [Google Scholar]
- Vine, R.P.; Harkness, E.M.; Linton, S.J. Wine Making from Grape Growing to Marketplace, 2nd ed.; Springer Science + Business Media, Inc.: New York, NY, USA, 2002; p. 85. [Google Scholar]
- Walker, T.; Morris, J.; Threlfall, R.; Main, G. pH modification of Cynthiana wine using cationic exchange. J. Agric. Food Chem. 2002, 50, 6346–6352. [Google Scholar] [CrossRef] [PubMed]
- Bonorden, W.R.; Nagel, C.W.; Powers, J.R. The adjustment of high pH/high titratable acidity wines by ion exchange. Am. J. Enol. Viticult. 1986, 37, 143–148. [Google Scholar]
- Ibeas, V.; Correia, A.C.; Jordão, A.M. Wine tartrate stabilization by different levels of cation exchange resin treatments: Impact on chemical composition, phenolic profile and organoleptic properties of red wines. Food Res. Int. 2015, 69, 364–372. [Google Scholar] [CrossRef]
- Lasanta, C.; Caro, I.; Pérez, L. The influence of cation exchange treatment on the final characteristics of red wines. Food Chem. 2013, 138, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Ponce, F.; Mirabal-Gallardo, Y.; Versari, A.; Laurie, V.F. The use of cation exchange resins in wines: Effects on pH, tartrate stability, and metal content. Cienc. Investig. Agrar. 2018, 45, 82–92. [Google Scholar] [CrossRef]
- Friedenberg, D.S.; Manns, D.C.; Perry, D.M.; Mansfield, A.K. Removal of copper from white wine: Imidazole-based polymers are efficient at copper adsorption. Catal. Discov. Pract. 2018. [Google Scholar] [CrossRef]
- Mira, H.; Leite, P.; Catarino, S.; da Silva, J.M.R.; Curvelo García, A.S. Metal reduction in wine using PVI-PVP copolmer and its effects on chemical and sensory characters. VITIS J. Grapevine Res. 2007, 46, 138–147. [Google Scholar]
- Benítez, P.; Castro, R.; Barroso, C.G. Removal of iron, copper and manganese from white wines through ion exchange techniques: Effects on their organoleptic characteristics and susceptibility to browning. Anal. Chim. Acta 2002, 458, 197–202. [Google Scholar] [CrossRef]
- Guise, R.; Filipe-Ribeiro, L.; Nascimento, D.; Bessa, O.; Nunes, F.M.; Cosme, F. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Food Chem. 2014, 156, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No. 606/2009 (10 July 2009) laying down certain detailed rules for implementing Council Regulation (EC) No. 479/2008 as regards the categories of grapevine products, oenological practices and the applicable restrictions.
- Bonechi, C.; Lamponi, S.; Donati, A.; Tamasi, G.; Consumi, M.; Leone, G.; Rossi, C.; Magnani, A. Effect of resveratrol on platelet aggregation by fibrinogen protection. Biophys. Chem. 2017, 222, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Tamasi, G.; Mangani, S.; Cini, R. Copper(I)-alkyl sulfide and -cysteine tri-nuclear clusters as models for metallo proteins: A structural density functional analysis. J. Biomol. Struct. Dyn. 2012, 30, 728–751. [Google Scholar] [CrossRef] [PubMed]
- Tamasi, G.; Bonechi, C.; Rossi, C.; Cini, R.; Magnani, A. Simulating the active sites of Copper trafficking proteins. Density Functional Structural and spectroscopy studies on Copper(I) complexes with thiols, carboxylato, amide and phenol ligands. J. Coord. Chem. 2016, 69, 404–424. [Google Scholar] [CrossRef]
- Tamasi, G.; Bonechi, C.; Donati, A.; Leone, G.; Rossi, C.; Cini, R.; Magnani, A. Analytical and structural investigation via infrared spectroscopy and Density Functional Methods of cuprous complexes of the antioxidant tripeptide glutathione (GSH). Synthesis and characterization of a novel CuI-GSH compound. Inorg. Chim. Acta 2018, 470, 158–171. [Google Scholar] [CrossRef]
- Tamasi, G.; Merlino, A.; Scaletti, F.; Heffeter, P.; Legin, A.A.; Jakupec, M.A.; Berger, W.; Messori, L.; Keppler, B.K.; Cini, R. {Ru(CO)x}-core complexes with benzimidazole ligands: Synthesis, X-ray structure and evaluation of anticancer activity in vivo. Dalton Trans. 2017, 46, 3025–3040. [Google Scholar] [CrossRef] [PubMed]
- Pontillo, N.; Ferraro, G.; Messori, L.; Tamasi, G.; Merlino, A. Ru-Based CO releasing molecules with azole ligands: Interaction with proteins and the CO release mechanism disclosed by X-ray crystallography. Dalton Trans. 2017, 46, 9621–9629. [Google Scholar] [CrossRef] [PubMed]
- Tamasi, G.; Carpini, A.; Valensin, D.; Messori, L.; Pratesi, A.; Scaletti, F.; Jakupec, M.; Keppler, B.; Cini, R. {Ru(CO)x}-core complexes with selected azoles: Synthesis, X-ray structure, spectroscopy, DFT analysis and evaluation of cytotoxic activity against human cancer cells. Polyhedron 2014, 81, 227–237. [Google Scholar] [CrossRef]
- Casolaro, M.; Bignotti, F.; Ferruti, P. Amphoteric poly(amido[ndash]amine) polymers containing the ethylenediamine-N,N′-diaceticacid moiety Stability of copper(II) and calcium(II) chelates. J. Chem. Soc. Faraday Trans. 1997, 93, 3663–3668. [Google Scholar] [CrossRef]
- Tamasi, G.; Casolaro, M.; Magnani, A.; Sega, A.; Chiasserini, L.; Messori, L.; Gabbiani, C.; Valiahdi, S.M.; Jakupec, M.A.; Keppler, B.K.; et al. New platinum–oxicam complexes as anti-cancer drugs. Synthesis, characterization, release studies from smart hydrogels, evaluation of reactivity with selected proteins and cytotoxic activity in vitro. J. Inorg. Biochem. 2010, 104, 799–814. [Google Scholar] [CrossRef] [PubMed]
- Bonechi, C.; Donati, A.; Tamasi, G.; Leone, G.; Consumi, M.; Rossi, C.; Lamponi, S.; Magnani, A. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophys. Chem. 2018, 233, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Leone, G.; Consumi, M.; Pepi, S.; Lamponi, S.; Bonechi, C.; Tamasi, G.; Donati, A.; Rossi, C.; Magnani, A. New formulations to enhance lovastatin release from Red Yeast Rice (RYR). J. Drug Deliv. Sci. Technol. 2016, 36, 110–119. [Google Scholar] [CrossRef]
- Tamasi, G.; Owens, N.F.; Cascella, F.; Cerqua, M.; Cini, R. A Case Study of Selected Volatile Phenols from Brettanomyces and Micronutrients Mn, Fe, Cu, Zn in Chianti Red Wines. J. Food Res. 2013, 2, 31–40. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No. 1622/2000 (24 July 2000) Laying down Certain Detailed Rules for Implementing Regulation (EC) No. 1493/1999 on the Common Organisation of the Market in Wine and Establishing a Community Code of Oenological Practices and Processes. 2001. Available online: https://publications.europa.eu/en/publication-detail/-/publication/6a12217e-217d-4e9e-a7ed-9522598672fa/language-en (accessed on 13 November 2018).
- DM 10 August 2017, Italian Ministry of Agricultural and Forestry Policies. Limits of Some Components in Wines. Application of Art. 25 of Law 12 December 2016, n. 238; Published on GU n. 201, 29 August 2017. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/12019 (accessed on 13 November 2018).
- Australian Government, Wine Australia: Manganese Levels in China. Available online: https://www.wineaustralia.com/getmedia/c036a4f8-5a36-459b-be60-2f0a36adb277/Manganese-Levels-in-China.pdf (accessed on 13 November 2018).
- Commission Regulation (EC) No. 1881/2006 (19 December 2006) Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32006R1881 (accessed on 13 November 2018).
- LANXESS Italy Energizing Chemistry, Technical Product Information. Available online: https://www.lenntech.com/Data-sheets/Lewatit-TP-207-L.pdf and https://www.lenntech.com/Data-sheets/Lewatit-TP-208-L.pdf (accessed on 13 November 2018).
- Lasanta, C.; Caro, I.; Pérez, L. Theoretical model for ion exchange of iron(III) in chelating resins: Application to metal ion removal from wine. Chem. Eng. Sci. 2005, 60, 3477–3486. [Google Scholar] [CrossRef]
- Alberti, G.; Pesavento, M.; Biesuz, R. A chelating resin as a probe for the copper(II) distribution in grape wines. Polymers 2007, 67, 1083–1093. [Google Scholar] [CrossRef]
- Casolaro, M.; Ito, Y.; Ishii, T.; Bottari, S.; Samperi, F.; Mendichi, R. Stimuli-responsive poly(ampholyte)s containing l-histidine residues: Synthesis and protonation thermodynamics of methacrylic polymers in the free and in the cross-linked gel forms. eXPRESS Polym. Lett. 2008, 2, 165–183. [Google Scholar] [CrossRef]
- Casolaro, M.; Bottari, S.; Cappelli, A.; Mendichi, R.; Ito, Y. Vinyl polymers based on l-histidine residues. Part 1. The thermodynamics of poly(ampholyte)s in the free and in the cross-linked gel form. Biomacromolecules 2004, 5, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Casolaro, M.; Bottari, S.; Ito, Y. Vinyl polymers based on l-histidine residues. Part 2. Swelling and electric behavior of smart poly(ampholyte) hydrogels for biomedical applications. Biomacromolecules 2006, 7, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Steliopoulos, P. Extension of the standard addition method by blank addition. MethodsX 2015, 2, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Tamasi, G.; Cambi, M.; Gaggelli, N.; Autino, A.; Cresti, M.; Cini, R. The content of selected minerals and vitamin C for potatoes (Solanum tuberosum L.) from the high Tiber Valley area, Southeast Tuscany. J. Food Compos. Anal. 2015, 41, 157–164. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Day | CNa | CK | CMg | CCa | CMn | CCu | CZn |
---|---|---|---|---|---|---|---|
58th | 28.4 ± 0.5 | 770 ± 22 | 205 ± 3 | 64 ± 5 | 1.59 ± 0.05 | 0.40 ± 0.02 | 0.58 ± 0.03 |
59th | 28.6 ± 0.5 | 768 ± 19 | 200 ± 3 | 65 ± 4 | 1.58 ± 0.04 | 0.39 ± 0.03 | 0.58 ± 0.03 |
60th | 28.2 ± 0.5 | 767 ± 19 | 206 ± 6 | 66 ± 3 | 1.60 ± 0.03 | 0.38 ± 0.02 | 0.58 ± 0.03 |
61th | 28.1 ± 0.5 | 765 ± 18 | 201 ± 5 | 63 ± 5 | 1.56 ± 0.02 | 0.40 ± 0.03 | 0.59 ± 0.04 |
62th | 28.0 ± 0.6 | 730 ± 16 | 201 ± 3 | 60 ± 3 | 1.55 ± 0.02 | 0.39 ± 0.03 | 0.57 ± 0.04 |
63th | 28.1 ± 0.6 | 738 ± 15 | 207 ± 5 | 63 ± 4 | 1.57 ± 0.02 | 0.41 ± 0.01 | 0.59 ± 0.05 |
64th | 28.0 ± 0.5 | 753 ± 10 | 204 ± 6 | 60 ± 3 | 1.56 ± 0.02 | 0.40 ± 0.04 | 0.58 ± 0.03 |
65th | 28.2 ± 0.6 | 760 ± 23 | 194 ± 5 | 59 ± 3 | 1.54 ± 0.02 | 0.37 ± 0.03 | 0.60 ± 0.03 |
66th | 28.3 ± 0.3 | 775 ± 11 | 192 ± 7 | 62 ± 2 | 1.56 ± 0.03 | 0.39 ± 0.01 | 0.59 ± 0.03 |
67th | 28.0 ± 0.6 | 740 ± 14 | 186 ± 5 | 58 ± 3 | 1.56 ± 0.03 | 0.40 ± 0.01 | 0.63 ± 0.05 |
68th | 28.3 ± 0.6 | 725 ± 14 | 202 ± 4 | 55 ± 2 | 1.56 ± 0.02 | 0.40 ± 0.02 | 0.58 ± 0.04 |
70th | 28.4 ± 0.5 | 735 ± 14 | 197 ± 5 | 59 ± 2 | 1.57 ± 0.02 | 0.37 ± 0.03 | 0.56 ± 0.04 |
80th | 28.7 ± 0.7 | 760 ± 14 | 199 ± 5 | 58 ± 2 | 1.55 ± 0.03 | 0.39 ± 0.03 | 0.60 ± 0.02 |
90th | 28.4 ± 0.6 | 750 ± 15 | 202 ± 4 | 57 ± 5 | 1.54 ± 0.02 | 0.40 ± 0.03 | 0.59 ± 0.03 |
100th | 29.3 ± 0.6 | 755 ± 12 | 200 ± 4 | 55 ± 3 | 1.56 ± 0.02 | 0.36 ± 0.03 | 0.57 ± 0.03 |
110th | 28.5 ± 0.6 | 780 ± 17 | 210 ± 8 | 57 ± 6 | 1.56 ± 0.02 | 0.37 ± 0.02 | 0.57 ± 0.04 |
Average * | 28.3 ± 0.3 | 754 ± 17 | 200 ± 6 | 60 ± 3 | 1.56 ± 0.02 | 0.39 ± 0.01 | 0.58 ± 0.02 |
7th | 55.7 ± 3.6 | 847 ± 50 | 92 ± 7 | 177 ± 7 | 1.65 ± 0.08 | 0.34 ± 0.04 | 0.57 ± 0.05 |
Δ% * | −49 | −11 | 117 | −66 | −5 | 15 | 2 |
Day | CNa | CK | CMg | CCa | CMn | CFe | CCu | CZn |
---|---|---|---|---|---|---|---|---|
58th | 20.5 ± 0.6 | 708 ± 18 | 175 ± 5 | 36 ± 3 | 1.80 ± 0.06 | 1.30 ± 0.07 | 2.68 ± 0.09 | 48.5 ± 4.6 |
59th | 20.1 ± 0.5 | 607 ± 26 | 177 ± 5 | 40 ± 4 | 1.79 ± 0.03 | 1.33 ± 0.05 | 2.67 ± 0.11 | 49.9 ± 7.9 |
60th | 20.2 ± 0.6 | 650 ± 18 | 176 ± 5 | 40 ± 3 | 1.78 ± 0.06 | 1.31 ± 0.07 | 2.72 ± 0.09 | 50.8 ± 4.6 |
61th | 19.8 ± 0.3 | 695 ± 21 | 178 ± 5 | 38 ± 5 | 1.70 ± 0.03 | 1.28 ± 0.04 | 2.65 ± 0.13 | 49.1 ± 7.8 |
62th | 19.5 ± 0.3 | 689 ± 25 | 180 ± 6 | 36 ± 2 | 1.75 ± 0.06 | 1.29 ± 0.05 | 2.71 ± 0.12 | 47.5 ± 4.7 |
63th | 19.6 ± 0.3 | 695 ± 27 | 182 ± 5 | 36 ± 3 | 1.82 ± 0.06 | 1.32 ± 0.06 | 2.74 ± 0.13 | 50.5 ± 3.7 |
64th | 19.2 ± 0.3 | 692 ± 20 | 175 ± 6 | 42 ± 5 | 1.80 ± 0.06 | 1.31 ± 0.04 | 2.67 ± 0.14 | 48.5 ± 2.9 |
65th | 19.4 ± 0.4 | 688 ± 22 | 178 ± 6 | 45 ± 4 | 1.77 ± 0.07 | 1.34 ± 0.05 | 2.63 ± 0.15 | 48.7 ± 3.0 |
66th | 19.6 ± 0.2 | 690 ± 16 | 174 ± 6 | 45 ± 2 | 1.79 ± 0.07 | 1.28 ± 0.04 | 2.66 ± 0.12 | 49.9 ± 3.6 |
67th | 20.1 ± 0.6 | 695 ± 16 | 165 ± 10 | 44 ± 4 | 1.80 ± 0.05 | 1.30 ± 0.04 | 2.65 ± 0.16 | 51.0 ± 2.7 |
68th | 20.6 ± 0.5 | 694 ± 27 | 170 ± 9 | 45 ± 4 | 1.81 ± 0.04 | 1.32 ± 0.05 | 2.65 ± 0.13 | 50.2 ± 2.9 |
70th | 20.5 ± 0.3 | 687 ± 33 | 172 ± 3 | 44 ± 4 | 1.83 ± 0.04 | 1.27 ± 0.06 | 2.73 ± 0.12 | 47.3 ± 3.1 |
80th | 20.7 ± 0.4 | 691 ± 27 | 173 ± 7 | 43 ± 3 | 1.79 ± 0.05 | 1.29 ± 0.06 | 2.65 ± 0.12 | 50.0 ± 2.6 |
90th | 20.4 ± 0.5 | 694 ± 29 | 168 ± 5 | 41 ± 3 | 1.81 ± 0.06 | 1.30 ± 0.05 | 2.66 ± 0.16 | 47.7 ± 2.0 |
100th | 20.5 ± 0.6 | 693 ± 26 | 169 ± 9 | 41 ± 2 | 1.78 ± 0.05 | 1.33 ± 0.06 | 2.64 ± 0.15 | 49.6 ± 3.7 |
110th | 19.8 ± 0.4 | 689 ± 28 | 179 ± 8 | 41 ± 2 | 1.82 ± 0.04 | 1.27 ± 0.06 | 2.68 ± 0.13 | 49.6 ± 3.3 |
Average * | 20.0 ± 0.5 | 685 ± 24 | 174 ± 5 | 41 ± 4 | 1.79 ± 0.03 | 1.31 ± 0.03 | 2.68 ± 0.03 | 49.3 ± 1.2 |
9th | 35.0 ± 0.5 | 780 ± 28 | 155 ± 12 | 61 ± 5 | 1.76 ± 0.05 | 1.36 ± 0.08 | 2.77 ± 0.15 | 45.0 ± 2.6 |
Δ% * | −43 | −11 | 12 | −32 | 2 | −4 | −3 | 10 |
Time | CNa | CK | CMg | CCa | CMn | CCu | CZn |
---|---|---|---|---|---|---|---|
0 | 28.3 ± 0.3 | 754 ± 17 | 200 ± 6 | 60 ± 3 | 1.56 ± 0.02 | 0.39 ± 0.01 | 0.58 ± 0.02 |
1 | 29.2 ± 2.9 | 750 ± 26 | 137 ± 9 | 43 ± 1 | 0.63 ± 0.05 | 0.27 ± 0.03 | 0.31 ± 0.04 |
3 | 27.2 ± 2.9 | 702 ± 18 | 124 ± 3 | 38 ± 3 | 0.46 ± 0.03 | 0.20 ± 0.02 | 0.20 ± 0.02 |
6 | 28.8 ± 2.9 | 672 ± 24 | 120 ± 3 | 37 ± 2 | 0.40 ± 0.05 | 0.15 ± 0.01 | 0.12 ± 0.02 |
18 | 27.5 ± 3.5 | 706 ± 17 | 117 ± 3 | 34 ± 2 | 0.37 ± 0.04 | 0.13 ± 0.01 | 0.093 ± 0.006 |
21 | 25.8 ± 3.4 | 743 ± 20 | 116 ± 1 | 33 ± 3 | 0.37 ± 0.04 | 0.12 ± 0.02 | 0.086 ± 0.006 |
24 | 25.8 ± 3.4 | 678 ± 17 | 115 ± 3 | 33 ± 4 | 0.36 ± 0.02 | 0.11 ± 0.01 | 0.081 ± 0.007 |
30 | 26.0 ± 3.7 | 684 ± 16 | 114 ± 2 | 33 ± 3 | 0.36 ± 0.02 | 0.10 ± 0.02 | 0.069 ± 0.008 |
42 | 24.5 ± 4.1 | 707 ± 15 | 114 ± 2 | 32 ± 4 | 0.36 ± 0.02 | 0.098 ± 0.010 | 0.058 ± 0.005 |
48 | 24.9 ± 3.2 | 643 ± 20 | 113 ± 2 | 32 ± 3 | 0.36 ± 0.03 | 0.095 ± 0.009 | 0.047 ± 0.008 |
Time | CNa | CK | CMg | CCa | CMn | CFe | CCu | CZn |
---|---|---|---|---|---|---|---|---|
0 | 20.0 ± 0.5 | 685 ± 24 | 174 ± 5 | 41 ± 3 | 1.79 ± 0.03 | 1.31 ± 0.03 | 2.68 ± 0.03 | 49.3 ± 1.2 |
1 | 20.1 ± 2.2 | 648 ± 20 | 138 ± 3 | 23 ± 2 | 0.68 ± 0.10 | 0.50 ± 0.07 | 1.10 ± 0.11 | 5.24 ± 1.42 |
3 | 21.0 ± 1.8 | 690 ± 18 | 128 ± 2 | 18 ± 1 | 0.53 ± 0.04 | 0.40 ± 0.05 | 0.89 ± 0.14 | 2.07 ± 0.16 |
6 | 19.7 ± 2.3 | 682 ± 18 | 123 ± 1 | 17 ± 2 | 0.47 ± 0.04 | 0.34 ± 0.03 | 0.67 ± 0.12 | 1.26 ± 0.06 |
18 | 20.6 ± 2.9 | 674 ± 19 | 128 ± 4 | 17 ± 2 | 0.47 ± 0.03 | 0.28 ± 0.02 | 0.41 ± 0.04 | 1.21 ± 0.04 |
21 | 20.5 ± 2.8 | 666 ± 17 | 125 ± 2 | 18 ± 1 | 0.47 ± 0.03 | 0.26 ± 0.02 | 0.35 ± 0.03 | 1.06 ± 0.05 |
24 | 20.1 ± 2.3 | 649 ± 22 | 119 ± 3 | 18 ± 2 | 0.45 ± 0.02 | 0.23 ± 0.03 | 0.35 ± 0.02 | 1.34 ± 0.06 |
30 | 20.6 ± 2.7 | 686 ± 20 | 122 ± 3 | 17 ± 2 | 0.44 ± 0.03 | 0.21 ± 0.03 | 0.31 ± 0.02 | 1.00 ± 0.06 |
42 | 20.3 ± 2.4 | 681 ± 19 | 116 ± 2 | 18 ± 1 | 0.47 ± 0.03 | 0.20 ± 0.03 | 0.25 ± 0.02 | 0.94 ± 0.06 |
48 | 19.4 ± 3.0 | 655 ± 26 | 107 ± 2 | 18 ± 1 | 0.45 ± 0.04 | 0.20 ± 0.02 | 0.25 ± 0.02 | 1.06 ± 0.08 |
Time | GR | VSR | ||
---|---|---|---|---|
pH | CI (Abs Units) * | pH | CI (Abs Units) * | |
0 | 3.47 ± 0.03 | 0.437 ± 0.007 | 3.45 ± 0.02 | 1.056 ± 0.014 |
6 | 3.32 ± 0.02 | 0.366 ± 0.012 | 3.24 ± 0.03 | 0.912 ± 0.009 |
18 | 3.33 ± 0.02 | 0.372 ± 0.012 | 3.24 ± 0.02 | 0.903 ± 0.009 |
24 | 3.32 ± 0.03 | 0.367 ± 0.007 | 3.23 ± 0.02 | 0.906 ± 0.008 |
36 | 3.31 ± 0.02 | 0.364 ± 0.006 | 3.21 ± 0.02 | 0.901 ± 0.007 |
48 | 3.32 ± 0.01 | 0.366 ± 0.008 | 3.22 ± 0.02 | 0.902 ± 0.006 |
Lewatit-207 (L-207) | Lewatit-208 (L-208) | |
---|---|---|
Appearance | Beige, opaque | Beige, opaque |
Matrix | Cross-linked polystyrene | Cross-linked polystyrene |
Functional group | Iminodiacetic acid | Iminodiacetic acid |
Structure | Macroporous | Macroporous |
Ionic form, as shipped | Na+ | Na+ |
Particle size | 0.61 ± 0.05 | 0.65 ± 0.05 |
Particle geometry | Sphere | Sphere |
Density | 1.10 g/mL | 1.16 g/mL |
Water retention | 55–60% | 58–64% |
Total capacity (H-form) | min 2.0 eq/L | min 2.5 eq/L |
Operating temperature | max 80 °C | max 80 °C |
Operating pH range | 1.5–9 | 2–12 |
Regenerant | HCl 7.5%(w/w) or H2SO4 10% (w/w) | HCl 10% (w/w) |
Conditioning | NaOH 4% (w/w) | NaOH 4% (w/w) |
Rinse water requirement | 5 times total bead volume | 5 times total bead volume |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamasi, G.; Pardini, A.; Bonechi, C.; Donati, A.; Casolaro, M.; Leone, G.; Consumi, M.; Cini, R.; Magnani, A.; Rossi, C. Ionic Exchange Resins and Hydrogels for Capturing Metal Ions in Selected Sweet Dessert Wines. Molecules 2018, 23, 2973. https://doi.org/10.3390/molecules23112973
Tamasi G, Pardini A, Bonechi C, Donati A, Casolaro M, Leone G, Consumi M, Cini R, Magnani A, Rossi C. Ionic Exchange Resins and Hydrogels for Capturing Metal Ions in Selected Sweet Dessert Wines. Molecules. 2018; 23(11):2973. https://doi.org/10.3390/molecules23112973
Chicago/Turabian StyleTamasi, Gabriella, Alessio Pardini, Claudia Bonechi, Alessandro Donati, Mario Casolaro, Gemma Leone, Marco Consumi, Renzo Cini, Agnese Magnani, and Claudio Rossi. 2018. "Ionic Exchange Resins and Hydrogels for Capturing Metal Ions in Selected Sweet Dessert Wines" Molecules 23, no. 11: 2973. https://doi.org/10.3390/molecules23112973
APA StyleTamasi, G., Pardini, A., Bonechi, C., Donati, A., Casolaro, M., Leone, G., Consumi, M., Cini, R., Magnani, A., & Rossi, C. (2018). Ionic Exchange Resins and Hydrogels for Capturing Metal Ions in Selected Sweet Dessert Wines. Molecules, 23(11), 2973. https://doi.org/10.3390/molecules23112973