A Human Health Risk Assessment of Trace Elements Present in Chinese Wine
Abstract
:1. Introduction
2. Results and Discussion Sections in Wrong Order–Experimental is Last–Renumber Things Affected
2.1. Method Verification Results
2.2. Concentrations of Trace Elements in Wine
2.3. Analysis of the Characteristics and Source of Trace Elements in Chinese Wine
2.4. Estimated Daily Intake of Trace Elements through the Consumption of Wine and Its Health Risk Assessment
3. Materials and Methods
3.1. Study Area and Sampling
3.2. Chemicals and Reagents
3.3. Preparation and Analytical Methods
3.4. Quality Control
3.5. Statistical Analysis and Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- OIV. 2017 Global Economic Vitiviniculture Data. 2017. Available online: http://www.oiv.int/public/medias/ 5686/ptconj-octobre2017-en.pdf (accessed on 27 September 2018).
- OIV. State of the Vitiviniculture World Market. 2018. Available online: http://www.oiv.int/public/medias/5958/oiv-state-of-the-vitiviniculture-world-market-april-2018.pdf (accessed on 27 September 2018).
- Goldberg, I.J.; Mosca, L.; Piano, M.R.; Fisher, E.A. Wine and your heart: a science advisory for healthcare professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association. Circulation 2001, 103, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Fulvio, U.; Alex, S. Wine polyphenols and optimal nutrition. Ann. N.Y. Acad. Sci. 2002, 957, 200–209. [Google Scholar]
- Shrikhande, A.J. Wine by-products with health effects. Food Res. Int. 2000, 33, 469–474. [Google Scholar] [CrossRef]
- Zuniga-Lopez, M.C.; Laurie, V.F.; Barriga-Gonzalez, G.; Folch-Cano, C.; Fuentes, J.; Agosin, E.; Olea-Azar, C. Chemical and biological properties of phenolics in wine: Analytical determinations and health benefits. Curr. Org. Chem. 2017, 21, 357–367. [Google Scholar] [CrossRef]
- Martin, M.A.; Goya, L.; Ramos, S. Protective effects of tea, red wine and cocoa in diabetes. Evidences from human studies. Food Chem. Toxicol. 2017, 109, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: a historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants, Thirty-third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Needleman, H.L. Leadpoisoning. Ann. Rev. Med. 2004, 55, 209–222. [Google Scholar] [CrossRef]
- Fang, Y.; Sun, X.Y.; Yang, W.J.; Ma, N.; Xin, Z.H.; Fu, J.; Liu, X.C.; Liu, M.; Mariga, A.M.; Zhu, X.F.; Hu, Q.H. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China. Food Chem. 2014, 147, 147–151. [Google Scholar] [CrossRef]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants, Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Tuzen, M. Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food Chem. Toxicol. 2009, 47, 1785–1790. [Google Scholar] [CrossRef]
- Forti, E.; Salovaara, S.; Cetin, Y.; Bulgheroni, A.; Tessadri, R.; Jennings, P.; Pfaller, W.; Prieto, P. In vitro evaluation of the toxicity induced by nickel soluble and particulate forms in human airway epithelial cells. Toxicol. Vitro 2011, 25, 454–461. [Google Scholar] [CrossRef]
- WHO. Nickel in drinking-water. In Background Document for Development of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Koreňovská, M.; Suhaj, M. Identification of some Slovakian and European wines origin by the use of factor analysis of elemental data. Eur. Food Res. Technol. 2005, 221, 550–558. [Google Scholar] [CrossRef]
- Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, lead, and other metals in relation to semen quality: Human evidence for molybdenum as a male reproductive toxicant. Environ. Health Persp. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants, Twenty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 1982. [Google Scholar]
- FAO/WHO. Evaluation of Certain Food Additives and Contaminants, Sixty-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- WHO. Manganese in Drinking-Water. In Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- FAO/WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; Report of a Joint FAO/WHO Expert Consultation, Bangkok, Thailand, 21–30 September 1998; World Health Organization: Geneva, Switzerland, 2004; Available online: http://whqlibdoc.who.int/publications/2004/9241546123.pdf (accessed on 27 September 2018).
- Meharg, A.A.; Rahman, M.M. Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environ. Sci. Technol. 2003, 37, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Malik, R.N.; Muhammad, S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 2013, 93, 2230–2238. [Google Scholar] [CrossRef] [PubMed]
- Fiket, Ž.; Mikac, N.; Kniewald, G. Arsenic and other trace elements in wines of eastern Croatia. Food Chem. 2011, 126, 941–947. [Google Scholar] [CrossRef]
- Sperkova, J.; Suchanek, M. Multivariate classification of wines from different bohemian regions (Czech Republic). Food Chem. 2005, 93, 659–663. [Google Scholar] [CrossRef]
- Marengo, E.; Aceto, M. Statistical investigation of the differences in the distribution of metals in Nebbiolo-based wines. Food Chem. 2003, 81, 621–630. [Google Scholar] [CrossRef]
- Gremaud, G.; Quaile, S.; Piantini, U.; Pfammatter, E.; Corvi, C. Characterization of swiss vineyards using isotopic data in combination with trace elements and classical parameters. Eur. Food Res. Technol. 2004, 219, 97–104. [Google Scholar] [CrossRef]
- Geana, I.; Iordache, A.; Ionete, R.; Marinescu, A.; Ranca, A.; Culea, M. Geographical origin identification of Romanian wines by ICP-MS elemental analysis. Food Chem. 2013, 138, 1125–1134. [Google Scholar] [CrossRef]
- Alkış, İ.M.; Öz, S.; Atakol, A.; Yılmaz, N.; Anlı, R.E.; Atakol, O. Investigation of heavy metal concentrations in some Turkish wines. J. Food Compos. Anal. 2014, 33, 105–110. [Google Scholar] [CrossRef]
- OIV. Maximum Acceptable Limits of Various Substances Contained in Wine. 2011. Available online: http://www.oiv.int/public/medias/2601/oiv-ma-c1-01.pdf (accessed on 27 September 2018).
- State Food and Drug Administration. Limit of Pollutants in Food; National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2017.
- Towle, K.M.; Garnick, L.C.; Monnot, A.D. A human health risk assessment of lead (pb) ingestion among adult wine consumers. Int. J. Food Contamination 2017, 4. [Google Scholar] [CrossRef]
- WHO. Chromium in drinking-water. In Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- WHO. Molybdenum in drinking-water. In Background Document for Preparation of WHO Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- USEPA. Integrated Risk Information System Assessments. Available online: https://cfpub.epa.gov/ncea/iris2/atoz.cfm (accessed on 27 September 2018).
- Qian, Y.Z.; Chen, C.; Zhang, Q.; Li, Y.; Chen, Z.J.; Li, M. Concentrations of cadmium, lead, mercury and arsenic in Chinese market milled rice and associated population health risk. Food Control 2010, 21, 1757–1763. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund, Volume I. In Human Health Evaluation Manual, Part A; United States Environmental Protection Agency Publication: Washington, DC, USA, 1989. [Google Scholar]
- Wang, X.L.; Sato, T.; Xing, B.S.; Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 2005, 350, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Wang, Q.C.; Zhang, X.W.; Zheng, D.M.; Zhang, Z.S.; Zhang, S.Q. Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci. Total Environ. 2007, 387, 96–104. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Element | Slope | Correlation Coefficient (R2) | Linear Range (μg/L) | LOD (μg/L) | LOQ (μg/L) | Precision (%, n = 11) | Added (μg/L) | Recovery (%) | GBW 10010 (mean ± SD, μg/L) |
---|---|---|---|---|---|---|---|---|---|
52Cr | 0.011 | 0.997 | 0.250–50.0 | 0.525 | 1.73 | 1.20 | 50.0 | 84 | ND |
100 | 85 | ||||||||
150 | 91 | ||||||||
55Mn | 0.016 | 0.999 | 0.250–50.0 | 0.111 | 0.366 | 0.602 | 500 | 135 | 17.1 ± 0.724 |
1500 | 137 | ||||||||
3000 | 135 | ||||||||
59Co | 0.013 | 0.999 | 0.250–50.0 | 0.024 | 0.080 | 3.31 | 1.00 | 100 | ND |
5.00 | 90 | ||||||||
10.0 | 89 | ||||||||
60Ni | 0.003 | 0.999 | 0.250–50.0 | 0.157 | 0.517 | 2.60 | 50.0 | 83 | 0.284 * ± 0.046 |
100 | 85 | ||||||||
150 | 87 | ||||||||
63Cu | 0.006 | 0.999 | 0.250–50.0 | 0.060 | 0.196 | 2.93 | 500 | 91 | 4.79 ± 0.289 |
1500 | 122 | ||||||||
3000 | 115 | ||||||||
66Zn | 0.002 | 0.999 | 0.250–50.0 | 0.780 | 2.58 | 1.52 | 500 | 93 | 24.3 ± 1.65 |
1500 | 93 | ||||||||
3000 | 93 | ||||||||
75As | 0.002 | 0.999 | 0.250–50.0 | 0.167 | 0.552 | 0.904 | 1.00 | 123 | ND |
5.00 | 118 | ||||||||
10.0 | 117 | ||||||||
98Mo | 0.006 | 0.999 | 0.250–50.0 | 0.025 | 0.081 | 1.61 | 1.00 | 108 | 0.515 ± 0.057 |
5.00 | 95 | ||||||||
10.0 | 94 | ||||||||
111Cd | 0.003 | 0.999 | 0.250–50.0 | 0.038 | 0.124 | 1.02 | 0.050 | 135 | 0.089 * ± 0.009 |
0.100 | 108 | ||||||||
0.500 | 99 | ||||||||
208Pb | 0.021 | 0.999 | 0.250–50.0 | 0.052 | 0.171 | 3.20 | 1.00 | 91 | 0.096 * ± 0.032 |
5.00 | 81 | ||||||||
10.0 | 86 | ||||||||
27Al | 0.008 | 0.983 | 10.0–250 | 1.31 | 4.33 | 4.81 | 500 | 107 | 363 ± 21.4 |
1500 | 100 | ||||||||
3000 | 90 | ||||||||
77Se | 0.0002 | 0.997 | 0.250–50.0 | 2.62 | 8.06 | 4.53 | 1.00 | 111 | ND |
5.00 | 124 | ||||||||
10.0 | 122 |
Element | NE (n = 30) | XJ (n = 50) | HM (n = 60) | HC (n = 30) | LP (n = 20) | YV (n = 35) | BG (n = 40) | SWH (n = 50) |
---|---|---|---|---|---|---|---|---|
Cr | 211 ± 94d | 138 ± 27.1abc | 131 ± 28.8abc | 140 ± 26.0bc | 133 ± 25.5abc | 123 ± 22.7ab | 151 ± 24.1c | 118 ± 33.3a |
Mn | 7807 ± 3786c | 1828 ± 471a | 1868 ± 491a | 1964 ± 500a | 2228 ± 431a | 2060 ± 612a | 6234 ± 3116b | 2283 ± 751a |
Co | 8.01 ± 2.80d | 3.29 ± 1.22ab | 3.55 ± 1.22ab | 4.04 ± 2.03b | 5.05 ± 2.33c | 3.43 ± 0.962ab | 5.87 ± 2.47c | 2.96 ± 1.62a |
Ni | 81 ± 43.5b | 26.3 ± 15.1a | 27.5 ± 12.6a | 28.6 ± 9.70a | 29.7 ± 10.9a | 22.6 ± 8.08a | 73 ± 38.7b | 23.3 ± 10.3a |
Cu | 170 ± 78d | 220 ± 126e | 159 ± 69cd | 112 ± 37.9ab | 150 ± 95bcd | 94 ± 59a | 97 ± 65a | 120 ± 63abc |
Zn | 724 ± 347e | 288 ± 114a | 378 ± 131ab | 394 ± 168b | 534 ± 243cd | 424 ± 135b | 597 ± 203d | 448 ± 239bc |
As | 12.2 ± 9.20d | 6.21 ± 2.19bc | 5.94 ± 2.51abc | 5.86 ± 2.09abc | 4.02 ± 1.74a | 4.43 ± 1.27ab | 6.70 ± 6.01c | 4.33 ± 2.72ab |
Mo | 2.13 ± 1.12b | 3.43 ± 1.84c | 1.91 ± 1.10ab | 2.12 ± 1.15b | 1.92 ± 1.69ab | 1.52 ± 1.39ab | 1.36 ± 0.578a | 1.45 ± 0.990a |
Cd | 1.35 ± 0.434e | 0.205 ± 0.099a | 0.334 ± 0.209a | 0.354 ± 0.287ab | 0.516 ± 0.221bc | 0.285 ± 0.147a | 1.11 ± 0.535d | 0.663 ± 0.535c |
Pb | 20.6 ± 7.39d | 6.86 ± 1.78a | 11.4 ± 4.08b | 11.0 ± 4.94b | 17.7 ± 6.30c | 13.5 ± 3.76b | 25.2 ± 9.82e | 13.6 ± 7.71b |
Al | 1058 ± 552d | 664 ± 403ab | 820 ± 377bc | 867 ± 658bcd | 1055 ± 592d | 758 ± 222ab | 990 ± 293cd | 553 ± 484a |
Se | 12.7 ± 0.602e | 10.1 ± 1.75d | 9.40 ± 1.24c | 9.75 ± 1.76cd | 8.48 ± 1.18a | 8.55 ± 1.21ab | 9.15 ± 1.22bc | 8.36 ± 1.21a |
Region 1 | Cr | Mn | Ni | Zn | As | Mo | Cd | Pb | Al | Se | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | |
NE | 0.704 | 0.821 | 26.0 | 30.7 | 0.270 | 0.325 | 2.41 | 2.85 | 0.041 | 0.052 | 0.007 | 0.008 | 0.004 | 0.005 | 0.069 | 0.078 | 3.53 | 4.21 | 0.042 | 0.043 |
XJ | 0.460 | 0.485 | 6.09 | 6.54 | 0.088 | 0.102 | 0.96 | 1.07 | 0.021 | 0.023 | 0.011 | 0.013 | 0.001 | 0.001 | 0.023 | 0.025 | 2.21 | 2.59 | 0.034 | 0.035 |
HM | 0.437 | 0.462 | 6.23 | 6.65 | 0.092 | 0.102 | 1.26 | 1.37 | 0.020 | 0.022 | 0.006 | 0.007 | 0.001 | 0.001 | 0.038 | 0.041 | 2.74 | 3.06 | 0.031 | 0.032 |
HC | 0.466 | 0.498 | 6.55 | 7.17 | 0.095 | 0.108 | 1.31 | 1.52 | 0.020 | 0.022 | 0.007 | 0.009 | 0.001 | 0.002 | 0.037 | 0.043 | 2.89 | 3.71 | 0.032 | 0.035 |
LP | 0.443 | 0.483 | 7.43 | 8.10 | 0.099 | 0.116 | 1.78 | 2.16 | 0.013 | 0.016 | 0.006 | 0.009 | 0.002 | 0.002 | 0.059 | 0.069 | 3.52 | 4.44 | 0.028 | 0.030 |
YV | 0.410 | 0.436 | 6.87 | 7.57 | 0.075 | 0.084 | 1.41 | 1.57 | 0.015 | 0.016 | 0.005 | 0.007 | 0.001 | 0.001 | 0.045 | 0.049 | 2.53 | 2.78 | 0.029 | 0.030 |
BG | 0.503 | 0.528 | 20.8 | 24.1 | 0.242 | 0.283 | 1.99 | 2.21 | 0.022 | 0.029 | 0.005 | 0.005 | 0.004 | 0.004 | 0.084 | 0.094 | 3.30 | 3.61 | 0.030 | 0.032 |
SWH | 0.393 | 0.424 | 7.61 | 8.32 | 0.078 | 0.088 | 1.49 | 1.72 | 0.014 | 0.017 | 0.005 | 0.006 | 0.002 | 0.003 | 0.045 | 0.053 | 1.84 | 2.30 | 0.028 | 0.029 |
PTDI | 183 2 | 12.0 | 1000 | 2.14 3 | 0.833 4 | 143 5 | 6.67 6 |
Elements | NE | XJ | HM | HC | LP | YV | BG | SWH | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | Mean | P95 | |
Cr | 0.235 | 0.274 | 0.153 | 0.162 | 0.146 | 0.154 | 0.155 | 0.166 | 0.148 | 0.161 | 0.137 | 0.145 | 0.168 | 0.176 | 0.131 | 0.141 |
Mn | 0.186 | 0.220 | 0.044 | 0.047 | 0.044 | 0.048 | 0.047 | 0.051 | 0.053 | 0.058 | 0.049 | 0.054 | 0.148 | 0.172 | 0.054 | 0.059 |
Ni | 0.014 | 0.016 | 0.004 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.006 | 0.004 | 0.004 | 0.012 | 0.014 | 0.004 | 0.004 |
Zn | 0.008 | 0.009 | 0.003 | 0.004 | 0.004 | 0.005 | 0.004 | 0.005 | 0.006 | 0.007 | 0.005 | 0.005 | 0.007 | 0.007 | 0.005 | 0.006 |
As | 0.137 | 0.173 | 0.070 | 0.077 | 0.067 | 0.073 | 0.067 | 0.073 | 0.043 | 0.053 | 0.050 | 0.053 | 0.073 | 0.097 | 0.047 | 0.057 |
Mo | 0.001 | 0.002 | 0.002 | 0.003 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Cd | 0.004 | 0.005 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.001 | 0.001 | 0.004 | 0.004 | 0.002 | 0.003 |
Se | 0.008 | 0.009 | 0.007 | 0.007 | 0.006 | 0.006 | 0.006 | 0.007 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 | 0.006 |
Total | 0.593 | 0.708 | 0.284 | 0.306 | 0.274 | 0.293 | 0.286 | 0.311 | 0.264 | 0.295 | 0.253 | 0.269 | 0.419 | 0.477 | 0.250 | 0.277 |
Region | Varieties | Number of Wines |
---|---|---|
NE | Beibinghong, Vidal | 30 |
XJ | Cabernet Sauvignon, Merlot | 50 |
HM | Cabernet Sauvignon, Merlot | 60 |
HC | Cabernet Sauvignon, Merlot | 30 |
LP | Cabernet Sauvignon, Cabernet Franc | 20 |
YV | Cabernet Sauvignon, Syrah | 35 |
BG | Cabernet Gernischet, Marselan | 40 |
SWH | Rose Honey, Crystal | 50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Z.-H.; Zhang, A.; Yang, Z.-W.; Zhong, Y.-L.; Mu, J.; Wang, F.; Liu, Y.-X.; Zhang, J.-J.; Fang, Y.-L. A Human Health Risk Assessment of Trace Elements Present in Chinese Wine. Molecules 2019, 24, 248. https://doi.org/10.3390/molecules24020248
Deng Z-H, Zhang A, Yang Z-W, Zhong Y-L, Mu J, Wang F, Liu Y-X, Zhang J-J, Fang Y-L. A Human Health Risk Assessment of Trace Elements Present in Chinese Wine. Molecules. 2019; 24(2):248. https://doi.org/10.3390/molecules24020248
Chicago/Turabian StyleDeng, Zhi-Hao, Ang Zhang, Zhi-Wei Yang, Ya-Li Zhong, Jian Mu, Fei Wang, Ya-Xin Liu, Jin-Jie Zhang, and Yu-Lin Fang. 2019. "A Human Health Risk Assessment of Trace Elements Present in Chinese Wine" Molecules 24, no. 2: 248. https://doi.org/10.3390/molecules24020248
APA StyleDeng, Z. -H., Zhang, A., Yang, Z. -W., Zhong, Y. -L., Mu, J., Wang, F., Liu, Y. -X., Zhang, J. -J., & Fang, Y. -L. (2019). A Human Health Risk Assessment of Trace Elements Present in Chinese Wine. Molecules, 24(2), 248. https://doi.org/10.3390/molecules24020248