Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Black Rice Flour, Batter and Muffin Characterization
2.2. Sensory Analysis
2.3. Texture Analysis
2.4. Confocal Microscopy Analysis
2.5. Anthocyanin in Vitro Digestibility
2.6. Shelf-Life Assessment
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Batters and Muffins Preparation
3.3. HPLC Technique
3.4. Sensorial Analysis
3.5. Physico-Chemical, Phytochemical and Microbiological Analysis of Muffins
3.6. Microbiological Assessment
3.7. Textural Analysis of Muffins
3.8. Confocal Microscopy Analysis
3.9. In Vitro Digestibility
3.10. Colorimetric Study
3.11. Storage Stability
3.12. Statistical Analysis of Data
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matos, M.E.; Sanz, T.; Rosell, C.M. Establishing the function of proteins on the rheological and quality properties of rice based gluten free muffins. Food Hydrocoll. 2014, 35, 150–158. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Cervera, S.; Sanz, T.; Salvador, A.; Fiszman, S.M. Rheological, textural and sensorial properties of low-sucrose muffins reformulated with sucralose/polydextrose. LWT Food Sci. Technol. 2012, 45, 213–220. [Google Scholar] [CrossRef]
- Sanz, T.; Salvador, A.; Baixauli, R.; Fiszman, S.M. Evaluation of four types of resistant starch in muffins. II. Effects in texture, colour and consumer response. Eur. Food Res. Technol. 2009, 229, 197–204. [Google Scholar] [CrossRef]
- Gujral, N.; Freeman, J.H.; Thomson, A. Celiac disease: Prevalence, diagnosis, pathogenesis and treatment. World J. Gastroenterol. 2012, 18, 6036–6059. [Google Scholar] [CrossRef] [PubMed]
- Rai, S.; Kaur, A.; Singh, B. Quality characteristics of gluten free cookies prepared from different flour combinations. J. Food Sci. Technol. 2014, 51, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Shevkani, K.; Singh, N. Influence of kidney bean, field pea and amaranth protein isolates on the characteristics of starch-based gluten-free muffins. Int. J. Food Sci. Technol. 2014, 49, 2237–2244. [Google Scholar] [CrossRef]
- Feighery, C.F. Coeliac disease. Br. Med. J. 1999, 319, 236–239. [Google Scholar] [CrossRef]
- Man, S.; Păucean, A.; Muste, S.; Pop, A. Studies on the formulation and quality characteristics of gluten free muffins. J. Agroaliment. Process. Technol. 2014, 20, 122–127. [Google Scholar]
- Bardella, M.T.; Fredella, C.; Prampolini, L.; Molteni, N.; Giunta, A.M.; Bianchi, P.A. Body composition and dietary intakes in adult celiac disease patients consuming a strict gluten-free diet. Am. J. Clin. Nutr. 2000, 72, 937–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islas-Rubio, A.R.; De la Barca, A.C.; Cabrera-Chávez, F.; Cota-Gastélum, A.G.; Beta, T. Effect of semolina replacement with a raw: Popped amaranth flour blend on cooking quality and texture of pasta. LWT Food Sci. Technol. 2014, 57, 217–222. [Google Scholar] [CrossRef]
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar] [CrossRef]
- Sedej, I.; Sakač, M.; Mandić, A.; Mišan, A.; Pestorić, M.; Šimurina, O.; Čanadanović-Brunet, J. Quality assessment of gluten-free crackers based on buckwheat flour. LWT Food Sci. Technol. 2011, 44, 694–699. [Google Scholar] [CrossRef]
- Gularte, M.A.; de la Hera, E.; Gómez, M.; Rosell, C.M. Effect of different fibers on the enrichment of gluten-free layer cake. LWT Food Sci. Technol. 2012, 48, 209–214. [Google Scholar] [CrossRef]
- Gularte, M.A.; Gómez, M.; Rosell, C.M. Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food Bioprocess Technol. Int. J. 2012, 5, 3142–3150. [Google Scholar] [CrossRef] [Green Version]
- Omary, M.B.; Fong, C.; Rothschild, J.; Finney, P. Effects of germination on the nutritional profile of gluten-free cereals and pseudocereals: A review. Cereal Chem. 2012, 89, 1–14. [Google Scholar] [CrossRef]
- Park, S.J.; Ha, K.-Y.; Shin, M. Properties and qualities of rice flours and gluten-free cupcakes made with higher-yield rice varieties in Korea. Food Sci. Biotechnol. 2012, 21, 365–372. [Google Scholar] [CrossRef]
- Ronda, F.; Oliete, B.; Gómez, M.; Caballero, P.A.; Pando, V. Rheological study of layer cake batters made with soybean protein isolate and different starch sources. J. Food Eng. 2011, 102, 272–277. [Google Scholar] [CrossRef]
- Schamne, C.; Dutcosky, S.D.; Demiate, I.M. Obtention and characterization of gluten free baked products. Ciênc. Tecnol. Aliment. 2010, 30, 741–750. [Google Scholar] [CrossRef]
- Ujjawal, K.; Kushwaha, S. Black rice. In Black Rice Research, History and Development; Springer International Publishing AG: Basel, Switzerland, 2016; pp. 21–47. ISBN 978-3-319-30153-2. [Google Scholar]
- Chang, K.K.; Kikuchi, S.; Kim, Y.K.; Park, S.H.; Yoon, U.; Lee, G.S.; Choi, J.W.; Kim, Y.H.; Park, S.C. Computational identification of seed specific transcription factors involved in anthocyanin production in black rice. Biochip. J. 2010, 4, 247–255. [Google Scholar] [CrossRef]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food. Chem. 2002, 50, 6170–6182. [Google Scholar] [CrossRef]
- Bordiga, M.; Gomez-Alonso, S.; Locatelli, M.; Travaglia, F.; Coïsson, J.D.; Hermosin-Gutierrez, I.; Arlorio, M. Phenolics characterization and antioxidant activity of six different pigmented Oryza sativa L. cultivars grown in Piedmont (Italy). Food Res. Int. 2014, 65, 282–290. [Google Scholar] [CrossRef]
- Melinia, V.; Panfilib, G.; Fratiannib, A.; Acquistuccia, R. Bioactive compounds in rice on Italian market: Pigmented varieties as a source of carotenoids, total phenolic compounds and anthocyanins, before and after cooking. Food Chem. 2019, 277, 119–127. [Google Scholar] [CrossRef]
- Bolea, C.; Turturica, M.; Stanciuc, N.; Vizireanu, C. Thermal degradation kinetics of bioactive compounds from black rice flour (Oryza sativa L.) extracts. J. Cereal Sci. 2016, 71, 160–166. [Google Scholar] [CrossRef]
- Yawadio, R.; Morita, N. Color enhancing effect of carboxylic acids on anthocyanins. Food Chem. 2007, 105, 421–427. [Google Scholar] [CrossRef]
- Hou, Z.; Qin, P.; Zhang, Y.; Cui, S.; Ren, G. Identification of anthocyanins isolated from black rice (Oryza sativa L.) and their degradation kinetics. Food Res. Int. 2013, 50, 691–697. [Google Scholar] [CrossRef]
- Zhang, M.W.; Guo, B.J.; Zhang, R.F.; Chi, J.W.; Wei, Z.C.; Xu, Z.H.; Zhang, Y.; Tang, X.J. Separation, purification and identification of antioxidant compositions in black rice. Agr. Sci. China 2006, 39, 153–160. [Google Scholar] [CrossRef]
- Zhang, M.W.; Zhang, R.F.; Guo, B.J.; Chi, J.W.; Wei, Z.C.; Xu, Z.H. The hypolipidemic and antioxidative effects of black rice pericarp anthocyanin in rats. Acta Nutrimenta Sin. 2006, 28, 404–408. [Google Scholar]
- Karakaya, S.; Simsek, S.; Tolga Eker, A.; Pineda-Vadillo, C.; Dupont, D.; Perez, B.; Viadel, B.; Sanz-Buenhombre, M.; Guadarrama Rodriguez, A.; Kertész, Z.; et al. Stability and bioaccessibility of anthocyanins in bakery products enriched with anthocyanins. Food Funct. 2016, 7, 3488–3496. [Google Scholar] [CrossRef] [PubMed]
- Nemś, A.; Peksa, A.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kita, A.; Drożdż, W.; Hamouz, K. Anthocyanin and antioxidant activity of snacks with coloured potato. Food Chem. 2015, 172, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Barti, P.; Albreht, A.; Skrt, M.; Tremlová, B.; Ošťádalová, M.; Šmejkal, K.; Vovk, I.; Ulrih Poklar, N. Anthocyanins in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. Int. J. Food Sci. Nutr. 2015, 66, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Demirkesen, I.; Mert, B.; Sumnu, G.; Sahin, S. Rheological properties of gluten-free bread formulations. J. Food Eng. 2010, 96, 295–303. [Google Scholar] [CrossRef]
- Wronkowska, M.; Troszynska, A.; Soral-Smietana, M.; Wolejszo, A. Effects of buckwheat flour (Fagopyrum esculentum moench) on the quality of gluten-free bread. Pol. J. Food Nutr. Sci. 2008, 58, 211–216. [Google Scholar]
- Langeveld, S.M.J.; Van, W.R.; Stuurman, N.; Kijne, J.W.; de Pater, S. B-type granule containing protrusions and interconnections between amyloplasts in developing wheat endosperm revealed by transmission electron microscopy and GFP expression. J. Exp. Bot. 2000, 51, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Bechtel, D.B.; Wilson, J.D. Amyloplast formation and starch granule development in hard red winter wheat. Cereal Chem. 2003, 80, 175–183. [Google Scholar] [CrossRef]
- Wilson, J.D.; Bechtel, D.B.; Todd, T.C.; Seib, P.A. Measurement of wheat starch granule size distribution using image analysis and laser diffraction technology. Cereal Chem. 2006, 83, 259–268. [Google Scholar] [CrossRef]
- Xie, X.J.; Cui, S.W.; Li, W.; Tsao, R. Isolation and characterization of wheat bran starch. Food Res. Int. 2008, 41, 882–887. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Sharma, N.K.; Kaur, N.; Chunduri, V.; Chawla, M.; Sharma, S.; Singh, K.; Garg, M. Soft and hard textured wheat differ in starch properties as indicated by trimodal distribution, morphology, thermal and crystalline properties. PLoS ONE 2016, 11, e0147622. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.; Woortman, A.J.J.; Mura, A.; Loos, K.; Loi, M.A. Localization and dynamics of amylose–lipophilic molecules inclusion complex formation in starch granules. Phys. Chem. Chem. Phys. 2015, 17, 7864–7871. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N.; Whisler, R.L. Starch: Chemistry and Technology, 3rd ed.; Academic Press: New York, NY, USA, 2009; ISBN 9780080926551. [Google Scholar]
- Li, W.H.; Bai, Y.F.; Mousaa-Saleh, A.S.; Zhang, Q.; Shen, Q. Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch. Food Bioproc. Technol. 2011, 5, 2233–2241. [Google Scholar] [CrossRef]
- Leewatchararongjaroen, J.; Anuntagool, J. Effects of Dry-Milling and Wet-Milling on Chemical, Physical and Gelatinization Properties of Rice Flour. Rice Sci. 2016, 23, 274–281. [Google Scholar] [CrossRef]
- Malik, A.N.; Gaiani, C.; Fukai, S.; Bhandari, B. X-ray photoelectron spectroscopic analysis of rice kernels and flours: Measurement of surface chemical composition. Food Chem. 2016, 212, 349–357. [Google Scholar] [CrossRef]
- Jongsutjarittam, N.; Charoenrein, S. Influence of waxy rice flour substitution for wheat flour on characteristics of batter and freeze-thawed cake. Carbohydr. Polym. 2013, 97, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Sari, T.P.; Mann, B.; Kumar, R.; Singh, R.R.B.; Sharma, R.; Bhardwaj, M.; Athira, S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 2015, 43, 540–546. [Google Scholar] [CrossRef]
- Ursache, F.M.; Andronoiu, D.G.; Ghinea, I.O.; Barbu, V.; Ionită, E.; Cotârlet, M.; Dumitrascu, L.; Botez, E.; Râpeanu, G.; Stănciuc, N. Valorizations of carotenoids from sea buckthorn extract by microencapsulation and formulation of value-added food products. J. Food Eng. 2018, 219, 16–24. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, R. Effect of thermal treatment on phenolic compounds from plum (Prunus domestica) extracts—A kinetic study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- Glover, B.J.; Martin, C. Anthocyanins. Curr. Biol. 2012, 22, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Merzlyak, M.N.; Chivkunova, O.B.; Solovchenko, A.E.; Naqvi, K.R. Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. J. Exp. Bot. 2008, 59, 3903–3911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oancea, A.M.; Aprodu, I.; Ghinea, I.O.; Barbu, V.; Ionită, E.; Bahrim, G.; Rapeanu, G.; Stanciuc, N. A bottom-up approach for encapsulation of sour cherries anthocyanins by using β-lactoglobulin as matrices. J. Food Eng. 2017, 210, 83–90. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Phytochemical Properties | Samples | ||
---|---|---|---|
S1 | S2 | S3 | |
Total anthocyanin content (TAC), mg cyanidin-3-glucoside (C3G)/100 g dry weight (DW) | n.d. | 69.93 ± 2.34 a | 125.4 ± 6.64 b |
Total polyphenolic content (TPC), mg gallic acid (GA)/100 g DW | 82.1 ± 1.06 a | 254.1 ± 5.52 b,c | 307.3 ± 1.02 b |
Total flavonoid content (TFC), mg catechin equivalents (CE)/100 g DW | 71.2 ± 1.44 a | 149.4 ± 3.10 b | 187.1 ± 5.04 c |
Antioxidant activity, mM 6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox)/100 g DW | 152.8 ± 2.10 a | 611.2 ± 8.32 b,c | 552.71 ± 5.06 c |
Physico-Chemical and Phytochemical Properties | Samples | |||
---|---|---|---|---|
S1 | S2 | S3 | ||
Proteins, g/100 g | 11.69 ± 0.57 b | 12.16 ± 1.16 a | 12.71 ± 0.92 a | |
Fats, g/100 g | 20.17 ± 1.37 b | 20.22 ± 0.45 c | 18.37 ± 1.91 a | |
Carbohydrates, g/100 g | 45.44 ± 2.60 a | 42.91 ± 1.68 b,c | 42.38 ± 2.51 c | |
Moisture, g/100 g | 20.60 ± 0.11 b | 22.53 ± 0.23 c | 24.13 ± 0.15 d | |
Ash, g/100 g | 2.10 ± 0.01 a | 2.18 ± 0.01 a | 2.41 ± 0.01 b | |
Energy value, %: kcal kJ | 421.81 1763.18 | 413.83 1729.82 | 396.71 a 1658.24 a | |
TAC, mg C3G/100 g DW | n.d. | 27.54 ± 2.22 a | 46.11 ± 3.91 b | |
TPC, mg GA/100 g DW | 64.4 ± 3.16 a | 170.3 ± 4.55 b | 226.5 ± 2.14 v | |
TFC, mg CE/100 g DW | 57.2 ± 0.94 a | 133.4 ± 1.88 b | 158.6 ± 1.02 c | |
Antioxidant activity, mM Trolox/100 g DW | 124.6 ± 3.20 a | 445.89 ± 2.22 b,c | 552.71 ± 5.06 c | |
Colorimetric parameters | L * | 80.41 ± 9.13 a | 27.71 ± 0.15 b | 19.6 ± 3.58 b,c |
a * | 0.06 ± 0.001 a | 8.47 ± 1.08 b | 6.53 ± 0.95 c | |
b * | 51.83 ± 1.15 a | 7.31 ± 0.41 b | 1.49 ± 0.14 c |
Sensorial Attribute | Samples | ||
---|---|---|---|
S1 | S2 | S3 | |
Color | 1.82 ± 0.87 a | 5.63 ± 1.2 | 6.27 ± 1.27 |
Surface humidity | 3.27 ± 1.84 a | 3.82 ± 0.98 a | 4.72 ± 1.19 |
Cross section appereance | 1.73 ± 1.10 | 1.64 ± 0.92 | 2.55 ± 1.7 |
Denseness | 2.82 ± 1.47 | 2.82 ± 1.25 | 2.82 ± 1.94 |
Fracturability | 2.46 ± 1.7 | 2.82 ± 1.33 | 3.64 ± 1.7 |
Hardness | 2.64 ± 1.57 a | 3.73 ± 1.35 a | 4.36 ± 1.5 |
Cohesivity | 5.46 ± 1.21 | 4.73 ± 1.00 | 4.55 ± 1.44 |
Moistness of mass | 3.36 ± 1.75 | 3.46 ± 1.58 | 3.81 ± 2.27 |
Taste | 6.00 ± 0.89 | 5.09 ± 1.22 | 4.90 ± 1.38 |
Sweetness | 4.90 ± 1.51 | 4.27 ± 1.67 | 4.63 ± 1.7 |
Overall acceptability | 5.90 ± 0.83 | 5.18 ± 0.98 | 5.18 ± 1.4 |
Textural Parameters, Unit | Samples | ||
---|---|---|---|
S1 | S2 | S3 | |
Firmness, N | 4.75 ± 0.16 a | 5.82 ± 0.26 | 6.67 ± 0.02 |
Cohesiveness, dimensionless | 0.37 ± 0.01 | 0.35 ± 0.02 | 0.33 ± 0.02 |
Springiness, mm | 6.95 ± 0.06 | 6.83 ± 0.08 | 6.57 ± 0.23 |
Chewiness, mJ | 10.15 ± 0.23 | 12.21 ± 0.25 | 15.13 ± 0.17 |
Storage Period, Days | S1 | S2 | S3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Colorimetric Parameters | |||||||||
L * | a * | b * | L * | a * | b * | L * | a * | b * | |
0 | 80.41 ± 9.13 c,d | 0.06 ± 0.001 b,c | 51.83 ± 1.15 a,b | 27.71 ± 0.15 b,c,d | 8.47 ± 1.08 a,b,c,d | 7.31 ± 0.41 a,b,c | 19.6 ± 3.58 c | 6.53 ± 0.95 a b | 1.49 ± 0.14 a,b,c |
7 | 88.02 ± 0.83 a | 0.10 ± 0.001 b | 60.11 ± 4.96 b,c | 29.42 ± 0.30 d | 9.10 ± 1.63 a,b | 8.40 ± 0.83 a | 23.9 ± 1.96 b,c | 7.30 ± 1.30 a,b,d | 1.71 ± 0.26 a,b,c |
14 | 110.41 ± 5.25 a,b,c,d | 0.18 ± 0.011 b | 73.25 ± 2.49 d | 35.80 ± 73.74 a,b | 10.30 ± 1.84 a | 9.20 ± 0.94 c | 28.8 ± 2.49 d | 11.6 ± 0.22 c | 2.25 ± 0.66 a |
21 | 119.63 ±4.60 b,c,d | 0.21 ± 0.057 b | 75.53 ± 4.31 a,b | 38.51 ± 1.41 a,b,c | 11.11 ± 1.10 a,b,c,d | 9.62 ± 0.31 b,c | 30.1 ± 3.63 a,b | 13.2 ± 0.95 a,b | 3.51 ± 0.51 b,c,d |
Samples | Storage Period, Days | |||
---|---|---|---|---|
0 | 7 | 14 | 21 | |
S1 | <10 | 1.33∙× 102 ± 0.13 | 2.59 × 103 ± 0.08 | 5.16 × 105 ± 1.10 |
S2 | <10 | <10 | <100 | <100 |
S3 | <10 | <10 | <10 | <100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croitoru, C.; Mureșan, C.; Turturică, M.; Stănciuc, N.; Andronoiu, D.G.; Dumitrașcu, L.; Barbu, V.; Enachi, E.; Horincar, G.; Râpeanu, G. Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice. Molecules 2018, 23, 3047. https://doi.org/10.3390/molecules23113047
Croitoru C, Mureșan C, Turturică M, Stănciuc N, Andronoiu DG, Dumitrașcu L, Barbu V, Enachi E, Horincar G, Râpeanu G. Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice. Molecules. 2018; 23(11):3047. https://doi.org/10.3390/molecules23113047
Chicago/Turabian StyleCroitoru, Constantin, Claudia Mureșan, Mihaela Turturică, Nicoleta Stănciuc, Doina Georgeta Andronoiu, Loredana Dumitrașcu, Vasilica Barbu, Elena Enachi (Ioniță), Georgiana Horincar (Parfene), and Gabriela Râpeanu. 2018. "Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice" Molecules 23, no. 11: 3047. https://doi.org/10.3390/molecules23113047
APA StyleCroitoru, C., Mureșan, C., Turturică, M., Stănciuc, N., Andronoiu, D. G., Dumitrașcu, L., Barbu, V., Enachi, E., Horincar, G., & Râpeanu, G. (2018). Improvement of Quality Properties and Shelf Life Stability of New Formulated Muffins Based on Black Rice. Molecules, 23(11), 3047. https://doi.org/10.3390/molecules23113047