Paeonol-Loaded Ethosomes as Transdermal Delivery Carriers: Design, Preparation and Evaluation
Abstract
:1. Introduction
2. Results
2.1. Optimization of Paeonol Ethosomal Formulation
2.2. Characterization of PAE Ethosomes
2.3. Validation of HPLC Method
2.4. In-Vitro Transdermal Absorption and Skin Retention Studies
2.5. Skin Irritation Study
2.6. Physical Stability Assay
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Paeonol Ethosomes
4.2.1. Single-Factor Test
4.2.2. Optimization Using Central Composite Design-Response Surface Methodology (CCD-RSM)
4.3. Characterization of PAE Ethosomes
4.3.1. Determination of Drug EE
4.3.2. Determination of VS, PDI and ZP
4.3.3. Morphological Study by Transmission Electron Microscopy (TEM)
4.3.4. Differential Scanning Calorimetry (DSC)
4.3.5. X-ray Diffraction (XRD)
4.3.6. Fourier-Transform Infrared Spectroscopy (FT-IR)
4.4. HPLC Assays for Paeonol
4.5. Ex-Vivo Animal Studies
4.5.1. Preparation of the Skin
4.5.2. In-Vitro Transdermal Absorption Study
4.5.3. In-Vitro Skin Retention Study
4.6. In-Vivo Skin Irritation Study
4.7. Physical Stability Assay
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, Y.; Zhu, J.Y.; Lei, Z.M.; Wan, L.J.; Zhu, X.W.; Ye, F.; Tong, Y.Y. Anti-proliferative effects of paeonol on human prostate cancer cell lines DU145 and PC-3. J. Physiol. Biochem. 2017, 73, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.; Pu, Y.; Li, S.; Xu, B.; Zhang, Y.; Zhang, T.; Wang, B. Beneficial anti-inflammatory effect of paeonol self-microemulsion-loaded colon-specific capsules on experimental ulcerative colitis rats. Artif. Cells Nanomed. Biotechnol. 2018, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.H.; Chan, C.M.; Chan, Y.W.; Lau, K.M.; Lau, T.W.; Lam, F.C.; Law, W.T.; Che, C.T.; Leung, P.C.; Fung, K.P.; et al. Pharmacological investigations of the anti-diabetic effect of Cortex Moutan and its active component paeonol. Phytomedicine 2007, 14, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, S.A.; Park, M.K.; Kim, S.H.; Park, Y.D.; Na, H.J.; Kim, H.M.; Shin, M.K.; Ahn, K.S. Paeonol inhibits anaphylactic reaction by regulating histamine and TNF-alpha. Int. Immunopharmacol. 2004, 4, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xue, X.; Zhang, B.; Cao, H.; Kong, F.; Jiang, W.; Li, J.; Sun, D.; Guo, R. Enhanced antitumor activity and attenuated cardiotoxicity of Epirubicin combined with Paeonol against breast cancer. Tumour Biol. 2016, 37, 12301–12313. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.Z.; Ge, Q.H.; Qu, R.; Li, Q.; Ma, S.P. Paeonol attenuates neurotoxicity and ameliorates cognitive impairment induced by d-galactose in ICR mice. J. Neurol. Sci. 2009, 277, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Zong, S.Y.; Pu, Y.Q.; Xu, B.L.; Zhang, T.; Wang, B. Study on the physicochemical properties and anti-inflammatory effects of paeonol in rats with TNBS-induced ulcerative colitis. Int. Immunopharmacol. 2017, 42, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.X.; Li, B.; Liu, T.; Wang, X.; Zhu, Y.; Wang, L.; Wang, X.H.; Niu, X.; Xiao, Y.; Sun, Q. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur. J. Pharm. Sci. 2017, 99, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.F.; Correia, I.J.; Silva, A.S.; Mano, J.F. Biomaterials for drug delivery patches. Eur. J. Pharm. Sci. 2018, 118, 49–66. [Google Scholar] [CrossRef] [PubMed]
- Zorec, B.; Zupancic, S.; Kristl, J.; Pavselj, N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur. J. Pharm. Biopharm. 2018, 127, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—Novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Mahmood, S.; Mandal, U.K.; Chatterjee, B. Transdermal delivery of raloxifene HCl via ethosomal system: Formulation, advanced characterizations and pharmacokinetic evaluation. Int. J. Pharm. 2018, 542, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marto, J.; Vitor, C.; Guerreiro, A.; Severino, C.; Eleuterio, C.; Ascenso, A.; Simoes, S. Ethosomes for enhanced skin delivery of griseofulvin. Colloids Surf. B Biointerfaces 2016, 146, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Sun, L.; Bevan, M.A.; Crooks, R.M. Comparison of nanoparticle size and electrophoretic mobility measurements using a carbon-nanotube-based coulter counter, dynamic light scattering, transmission electron microscopy, and phase analysis light scattering. Langmuir 2004, 20, 6940–6945. [Google Scholar] [CrossRef] [PubMed]
- Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Shelke, S.; Shahi, S.; Jadhav, K.; Dhamecha, D.; Tiwari, R.; Patil, H. Thermoreversible nanoethosomal gel for the intranasal delivery of Eletriptan hydrobromide. J. Mater. Sci. Mater. Med. 2016, 27, 103. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cheng, X.; Zhang, Z.; Wang, Z.; Wang, Z. The therapy with ethosomes containing 5-fluorouracil for laryngotracheal stenosis in rabbit models. Eur. Arch. Otorhinolaryngol. 2017, 274, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Wo, Y.; He, R.; Qian, Y.; Zhang, Y.; Cui, D. Preparation and characterization of different sizes of ethosomes encapsulated with 5-fluorouracil and its experimental study of permeability in hypertrophic scar. J. Nanosci. Nanotechnol. 2010, 10, 4178–4183. [Google Scholar] [CrossRef] [PubMed]
- Abdel, M.H.A.; Ishak, R.A.; Geneidi, A.S.; Mansour, S. Nanoethosomes for transdermal delivery of tropisetron HCl: Multi-factorial predictive modeling, characterization, and ex vivo skin permeation. Drug Dev. Ind. Pharm. 2017, 43, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Benvegnu, D.M.; Barcelos, R.C.; Boufleur, N.; Reckziegel, P.; Pase, C.S.; Ourique, A.F.; Beck, R.C.; Burger, M.E. Haloperidol-loaded polysorbate-coated polymeric nanocapsules increase its efficacy in the antipsychotic treatment in rats. Eur. J. Pharm. Biopharm. 2011, 77, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Guo, C.; Zhou, Y.; Cao, F.; Zhu, W.; Sun, M.; Zhai, G. Skin irritation and the inhibition effect on HSV-1 in vivo of penciclovir-loaded microemulsion. Int. Immunopharmacol. 2010, 10, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- AbdelSamie, S.M.; Kamel, A.O.; Sammour, O.A.; Ibrahim, S.M. Terbinafine hydrochloride nanovesicular gel: In vitro characterization, ex vivo permeation and clinical investigation. Eur. J. Pharm. Sci. 2016, 88, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Pinto, J.M.; Gonzalez-Rodriguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005, 298, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Meng, S.; Chen, Z.; Yang, L.; Zhang, W.; Liu, D.; Guo, J.; Guan, Y.; Li, J. Enhanced transdermal bioavailability of testosterone propionate via surfactant-modified ethosomes. Int. J. Nanomed. 2013, 8, 3051–3060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Fan, C.; Li, X.; Fan, Y.; Wang, X.; Li, M.; Liu, Y. Preparation and in vitro evaluation of tacrolimus-loaded ethosomes. Sci. World J. 2012, 2012, 874053. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Gao, S.; Tian, B.; Shi, Y.; Lv, Q.; Han, J. Formulation Optimization and In-vitro and In-vivo Evaluation of Lornoxicam Ethosomal Gels with Penetration Enhancers. Curr. Drug Deliv. 2018, 15, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Hassan, E.E.; Parish, R.C.; Gallo, J.M. Optimized formulation of magnetic chitosan microspheres containing the anticancer agent, oxantrazole. Pharm. Res. 1992, 9, 390–397. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Factor | Level | EE (%) | ZP (−mV) | VS (nm) | PDI | OD |
---|---|---|---|---|---|---|
Ethanol (% w/v) | 15% | 75.13 ± 1.08 | 11.10 ± 1.05 | 123.7 ± 9.5 | 0.213 ± 0.003 | 0.72 ± 0.02 |
20% | 76.33 ± 1.11 | 12.31 ± 1.09 | 145.7 ± 4.7 | 0.262 ± 0.012 | 0.77 ± 0.04 | |
25% | 72.56 ± 2.02 | 14.00 ± 1.11 | 175.6 ± 7.5 | 0.283 ± 0.006 | 0.79 ± 0.02 | |
30% | 65.85 ± 1.06 | 11.71 ± 1.15 | 201.1 ± 9.3 | 0.308 ± 0.021 | 0.53 ± 0.10 | |
35% | 53.63 ± 2.03 | 12.52 ± 1.54 | 215.8 ± 8.8 | 0.295 ± 0.032 | 0.54 ± 0.09 | |
40% | 34.26 ± 1.13 | 10.00 ± 1.77 | 399.7 ± 10.4 | 0.360 ± 0.034 | 0.00 ± 0.00 | |
CHO (% w/v) | 0% | 76.1 ± 1.05 | 6.45 ± 1.11 | 117.2 ± 4.8 | 0.256 ± 0.014 | 0.00 ± 0.00 |
1% | 77.31 ± 2.10 | 13.00 ± 1.83 | 138.5 ± 5.2 | 0.271 ± 0.032 | 0.65 ± 0.04 | |
2% | 77.58 ± 2.08 | 13.30 ± 0.36 | 140.3 ± 8.4 | 0.290 ± 0.011 | 0.51 ± 0.13 | |
3% | 78.21 ± 3.05 | 9.17 ± 1.32 | 148.0 ± 9.6 | 0.286 ± 0.025 | 0.47 ± 0.12 | |
4% | 77.30 ± 0.56 | 8.83 ± 1.20 | 184.1 ± 9.2 | 0.289 ± 0.055 | 0.21 ± 0.23 | |
5% | 79.18 ± 1.35 | 8.28 ± 0.64 | 188.6 ± 9.9 | 0.298 ± 0.068 | 0.00 ± 0.00 | |
SPC (% w/v) | 1% | 57.42 ± 0.24 | 19.70 ± 1.12 | 100.4 ± 3.6 | 0.241 ± 0.021 | 0.00 ± 0.00 |
2% | 70.56 ± 2.25 | 18.60 ± 1.24 | 114.1 ± 5.5 | 0.285 ± 0.008 | 0.70 ± 0.08 | |
3% | 78.80 ± 1.29 | 15.70 ± 0.67 | 127.5 ± 7.2 | 0.302 ± 0.022 | 0.64 ± 0.18 | |
4% | 83.27 ± 0.78 | 14.10 ± 0.35 | 139.5 ± 8.6 | 0.338 ± 0.043 | 0.51 ± 0.16 | |
5% | 83.65 ± 2.22 | 12.90 ± 1.44 | 176.6 ± 9.3 | 0.373 ± 0.056 | 0.29 ± 0.17 | |
6% | 87.38 ± 1.32 | 11.87 ± 0.23 | 201.0 ± 11.5 | 0.415 ± 0.059 | 0.00 ± 0.00 |
Variables | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
A/% | 15 | 20 | 25 |
B/% | 0.5 | 1.0 | 1.5 |
C/% | 1.5 | 2.0 | 2.5 |
Run | A (%) | B (%) | C (%) | EE (%) | ZP (−mV) | VS (nm) | PDI | dEE | dZP | dVS | dPDI | OD |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 25 | 1.5 | 2 | 84.65 | 15.4 | 113.4 | 0.138 | 0.97 | 0.61 | 0.95 | 0.78 | 0.81 |
2 | 20 | 1.5 | 1.5 | 67.54 | 18.1 | 145.5 | 0.142 | 0 | 1 | 0 | 0.73 | 0 |
3 | 20 | 0.5 | 1.5 | 75.31 | 11.5 | 111.6 | 0.208 | 0.44 | 0.06 | 1 | 0 | 0 |
4 | 20 | 1 | 2 | 77.98 | 15.8 | 119.9 | 0.127 | 0.59 | 0.67 | 0.76 | 0.9 | 0.72 |
5 | 20 | 1 | 2 | 80.25 | 13.9 | 113.5 | 0.124 | 0.72 | 0.4 | 0.94 | 0.93 | 0.71 |
6 | 25 | 0.5 | 2 | 80.69 | 13.2 | 137.5 | 0.134 | 0.75 | 0.3 | 0.24 | 0.82 | 0.46 |
7 | 15 | 0.5 | 2 | 78.36 | 12.9 | 143.5 | 0.151 | 0.62 | 0.26 | 0.06 | 0.63 | 0.28 |
8 | 25 | 1 | 2.5 | 85.12 | 17.2 | 120.8 | 0.141 | 1 | 0.87 | 0.73 | 0.74 | 0.83 |
9 | 20 | 1 | 2 | 76.98 | 15.5 | 119.4 | 0.129 | 0.54 | 0.63 | 0.77 | 0.88 | 0.69 |
10 | 20 | 0.5 | 2.5 | 79.48 | 12.2 | 132.9 | 0.156 | 0.68 | 0.16 | 0.37 | 0.58 | 0.39 |
11 | 25 | 1 | 1.5 | 71.21 | 17.5 | 140.3 | 0.118 | 0.21 | 0.91 | 0.15 | 1 | 0.41 |
12 | 15 | 1.5 | 2 | 80.55 | 15.8 | 142.6 | 0.165 | 0.74 | 0.67 | 0.09 | 0.48 | 0.38 |
13 | 15 | 1 | 1.5 | 78.97 | 11.1 | 140.6 | 0.141 | 0.65 | 0 | 0.14 | 0.74 | 0 |
14 | 20 | 1.5 | 2.5 | 82.46 | 16.1 | 126.3 | 0.146 | 0.85 | 0.71 | 0.57 | 0.69 | 0.7 |
15 | 20 | 1 | 2 | 81.89 | 15.7 | 123.5 | 0.125 | 0.82 | 0.66 | 0.65 | 0.92 | 0.75 |
16 | 20 | 1 | 2 | 78.31 | 15.8 | 120.9 | 0.125 | 0.61 | 0.67 | 0.73 | 0.92 | 0.72 |
17 | 15 | 1 | 2.5 | 77.48 | 16.4 | 124.1 | 0.133 | 0.57 | 0.76 | 0.63 | 0.83 | 0.69 |
Code | EE (%) | ZP (−mV) | VS (nm) | PDI | OD |
---|---|---|---|---|---|
Actual values | 84.33 ± 1.34 | 16.8 ± 0.36 | 120.2 ± 1.3 | 0.131 ± 0.006 | 0.84 ± 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Guo, D.; Fan, Y.; Wang, J.; Cheng, J.; Zhang, X. Paeonol-Loaded Ethosomes as Transdermal Delivery Carriers: Design, Preparation and Evaluation. Molecules 2018, 23, 1756. https://doi.org/10.3390/molecules23071756
Ma H, Guo D, Fan Y, Wang J, Cheng J, Zhang X. Paeonol-Loaded Ethosomes as Transdermal Delivery Carriers: Design, Preparation and Evaluation. Molecules. 2018; 23(7):1756. https://doi.org/10.3390/molecules23071756
Chicago/Turabian StyleMa, Hongdan, Dongyan Guo, Yu Fan, Jing Wang, Jiangxue Cheng, and Xiaofei Zhang. 2018. "Paeonol-Loaded Ethosomes as Transdermal Delivery Carriers: Design, Preparation and Evaluation" Molecules 23, no. 7: 1756. https://doi.org/10.3390/molecules23071756
APA StyleMa, H., Guo, D., Fan, Y., Wang, J., Cheng, J., & Zhang, X. (2018). Paeonol-Loaded Ethosomes as Transdermal Delivery Carriers: Design, Preparation and Evaluation. Molecules, 23(7), 1756. https://doi.org/10.3390/molecules23071756