Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes
Abstract
:1. Introduction
2. Unfractionated Heparin (uFH) Versus Low-Molecular-Weight Heparins (LMWHs)
3. LMWH-Loaded Microparticles
3.1. Respiratory Route
3.2. Oral Route
3.3. Invasive Route
4. LMWH-Loaded Nanoparticles
4.1. Respiratory Route
4.2. Oral Route
4.3. Topical Route
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Motlekar, N.A.; Youan, B.B. The quest for non-invasive delivery of bioactive macromolecules: A focus on heparins. J. Control. Release 2006, 113, 91–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, B.; Gupta, N.; Ahsan, F. Low-molecular-weight heparin (LMWH)-loaded large porous PEG-PLGA particles for the treatment of asthma. J. Aerosol. Med. Pulm. Drug Deliv. 2014, 27, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.; Coombe, D.R. Heparin mimetics: Their therapeutic potential. Pharmaceuticals 2017, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Shastri, M.D.; Peterson, G.M.; Patel, R.P. Redefining approaches to asthma: Bridging the gap between heparin and its anti-inflammatory activities. Curr. Allergy Asthma Rep. 2017, 17, 70. [Google Scholar] [CrossRef] [PubMed]
- Poterucha, T.J.; Libby, P.; Goldhaber, S.Z. More than an anticoagulant: Do heparins have direct anti-inflammatory effects? Thromb. Haemost. 2017, 117, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.Y.; Wang, Z.; Hu, J.; Liu, W.F.; Shen, Z.Z.; Zhang, X.; Yu, L.; Fan, J.; Zhou, J. PI-88 inhibits postoperative recurrence of hepatocellular carcinoma via disrupting the surge of heparanase after liver resection. Tumor Biol. 2016, 37, 2987–2998. [Google Scholar] [CrossRef] [PubMed]
- Khasraw, M.; Pavlakis, N.; McCowatt, S.; Underhill, C.; Begbie, S.; de Souza, P.; Boyce, A.; Parnis, F.; Lim, V.; Harvie, R.; et al. Multicentre phase I/II study of PI-88, a heparanase inhibitor in combination with docetaxel in patients with metastatic castrate-resistant prostate cancer. Ann. Oncol. 2010, 21, 1302–1307. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.J.; Karuturi, R.; Al-Horani, R.A.; Baranwal, S.; Patel, J.; Desai, U.R.; Patel, B.B. Synthetic, non-saccharide, glycosaminoglycan mimetics selectively target colon cancer stem cells. ACS Chem. Biol. 2014, 9, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Veraldi, N.; Hughes, A.J.; Rudd, T.R.; Thomas, H.B.; Edwards, S.W.; Hadfield, L.; Skidmore, M.A.; Siligardi, G.; Cosentino, C.; Shute, J.K.; et al. Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydr. Polym. 2015, 117, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.J.; Sharon, C.; Baranwal, S.; Boothello, R.S.; Desai, U.R.; Patel, B.B. Heparan sulfate hexasaccharide selectively inhibits cancer stem cells self-renewal by activating p38 MAP kinase. Oncotarget 2016, 7, 84608–84622. [Google Scholar] [CrossRef] [PubMed]
- Javadinia, S.A.; Gholami, A.; Joudi Mashhad, M.; Ferns, G.A.; Shahidsales, S.; Avan, A.; Kermani, A.T. Anti-tumoral effects of low molecular weight heparins: A focus on the treatment of esophageal cancer. J. Cell Physiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Cassinelli, G.; Dal Bo, L.; Favini, E.; Cominetti, D.; Pozzi, S.; Tortoreto, M.; De Cesare, M.; Lecis, D.; Scanziani, E.; Minoli, L.; et al. Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Lett. 2018, 415, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Lever, R.; Clive, P. Novel drug development opportunities for heparin. Nat. Rev. Drug Discov. 2002, 1, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chandarajoti, K.; Zhang, X.; Pagadala, V.; Dou, W.; Hoppensteadt, D.M.; Sparkenbaugh, E.M.; Cooley, B.; Daily, S.; Key, N.S.; et al. Synthetic oligosaccharides can replace animal-sourced low-molecular weight heparins. Sci. Transl. Med. 2017, 9, 5954. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, R.; Shanmugam, A. Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (linne) using chromatography. Appl. Biochem. Biotechnol. 2010, 160, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, N.; Murugan, S.; Bharadhirajan, P. Isolation and characterization of anticoagulant compound from marine mollusc Donax faba (Gmelin, 1791) from Thazhanguda, Southeast Coast of India. Afr. J. Biotechnol. 2013, 12, 5968–5974. [Google Scholar]
- Eldor, A. The use of low-molecular-weight heparin for the management of venous thromboembolism in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002, 104, 3–13. [Google Scholar] [CrossRef]
- Pineo, G.; Hull, R.; Marder, V. Oral delivery of heparin: SNAC and related formulations. Best Pract. Res. Clin. Haematol. 2004, 17, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Greer, I.A. Venous thromboembolism and anticoagulant therapy in pregnancy. Gender Med. 2005, 2, S10–S17. [Google Scholar] [CrossRef]
- Baldwin, A.D.; Robinson, K.G.; Militar, J.L. In situ crosslinkable heparin-containing poly(ethylene glycol) hydrogels for sustained anticoagulant release. J. Biomed. Mater. Res. 2014, 100, 2106–2118. [Google Scholar] [CrossRef] [PubMed]
- Molinari, A.C.; Banov, L.; Bertamino, M. A practical approach to the use of low molecular weight heparins in VTE treatment and prophylaxis in children and newborns. Paediatr. Hematol. Oncol. 2014, 32, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Cai, C.; Chandarajoti, K.; Hsieh, P.H.; Li, L.; Pham, T.Q.; Sparkenbaugh, E.M.; Sheng, J.; Key, N.S.; Pawlinski, R.; et al. Homogeneous low-molecular-weight heparins with reversible anticoagulant activity. Nat. Chem. Biol. 2014, 10, 248–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Byun, Y. Recent advances in anticoagulant drug delivery. Expert Opin. Drug Deliv. 2016, 13, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Mahjub, R.; Shayesteh, T.H.; Radmehr, M.; Vafaei, S.Y.; Amini, M.; Dinarvand, R.; Dorkoosh, F.A. Preparation and optimization of N-trimethyl-O-carboxymethyl chitosan nanoparticles for delivery of low-molecular-weight heparin. Pharm. Dev. Technol. 2016, 21, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Kinoda, J.; Ishihara, M.; Nakamura, S.; Fujita, M.; Fukuda, K.; Sato, Y.; Yokoe, H. Protective effect of FGF-2 and low-molecular-weight heparin/protamine nanoparticles on radiation-induced healing-impaired wound repair in rats. J. Radiat. Res. 2017, 1, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Bounameaux, H. Unfractionated versus low-molecular-weight heparin in the treatment of venous thromboembolism. Vasc. Med. 1998, 3, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Liu, Y.; Xia, C.; Zhou, Y.; Zhang, Z.; He, Q. Polymer–drug nanoparticles combine doxorubicin carrier and heparin bioactivity functionalities for primary and metastatic cancer treatment. Mol. Pharm. 2017, 14, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; O’Rear, E.A. Modified dextran, heparin-based triggered release microspheres for cardiovascular delivery of therapeutic drugs using protamine as a stimulus. J. Microencapsul. 2017, 34, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Chi, B.; Chu, M.; Zhang, Q.; Zhan, S.; Shi, R.; Xu, H.; Mao, C. Hemocompatible ɛ-polylysine-heparin microparticles: A platform for detecting triglycerides in whole blood. Biosens Bioelectron. 2018, 99, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Hettiaratchi, M.H.; Chou, C.; Servies, N.; Smeekens, J.M.; Cheng, A.; Esancy, C.; Wu, R.; McDevitt, T.C.; Guldberg, R.E.; Krishnan, L. Competitive protein binding influences heparin-based modulation of spatial growth factor delivery for bone regeneration. Tissue Eng. Part A 2017, 23, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Thi, P.L.; Lee, Y.; Kwon, H.J.; Park, K.M.; Lee, M.H.; Park, J.C.; Park, K.D. Tyrosinase-mediated surface coimmobilization of heparin and silver nanoparticles for antithrombotic and antimicrobial activities. ACS Appl. Mater. Interfaces 2017, 9, 20376–20384. [Google Scholar]
- Yanamoto, S.; Babazada, H.; Sakai, S.; Higuchi, Y.; Yamashita, F.; Hashida, M. Anti-inflammatory effect of self-assembling glycol-split glycosaminoglycan-stearylamine conjugates in lipopolysaccharide stimulated Macrophages. Biol. Pharm. Bull. 2017, 40, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.W.; Doshi, N.; Mitragotri, S. Adaptive micro and NPs: temporal control over carrier properties to facilitate drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Gray, E.; Mulloy, B.; Barrowcliffe, T.W. Heparin and low-molecular-weight-heparin. Thromb. Haemost. 2008, 99, 807–818. [Google Scholar]
- Scala-Bertola, J.; Rabiskova, M.; Lecompte, T. Granules in the improvement of oral heparin bioavailability. Int. J. Pharm. 2009, 374, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Javot, L.; Lecompte, T.; Rabiskova, M.; Maincent, P. Encapsulation of low molecular weight heparins: Influence on the anti-Xa/anti-IIa ratio. J. Control. Release 2009, 139, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wong, H.; Lin, K.; Chen, H.; Wey, S.; Sonaje, K.; Lin, Y.; Chu, C.; Sung, H. The characteristics, biodistribution and bioavailability of a chitosanbased nanoparticulate system for the oral delivery of heparin. Biomaterials 2009, 30, 6629–6637. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.B.; Ahsan, F.; Khan, M.A. Oral delivery of proteins: progress and prognostication. Crit. Rev. Ther. Drug Carrier Syst. 2005, 19, 35–169. [Google Scholar] [CrossRef]
- Oliveira, C.R.; Rezende, C.M.F.; Silva, M.R.; Pego, A.P.; Borges, O.; Goes, A.M. A new strategy based on Smrho protein loaded chitosan nanoparticles as a candidate oral vaccine against schistosomiasis. PLoS Negl. Trop. Dis. 2012, 6, e1894. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Paliwal, S.R.; Agrawal, G.P.; Vyas, S.P. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation. Int. J. Pharm. 2012, 422, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Bagre, A.P.; Jain, K.; Jain, N.K. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: In vitro and in vivo assessment. Int. J. Pharm. 2013, 456, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.Y.; Ubrich, N.; Marchand-Arvier, M. Preparation and in vitro evaluation of heparin-loaded polymeric NPs. Drug Deliv. 2001, 8, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Hoffart, V.; Lamprecht, A.; Maincent, P. Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J. Control. Release 2006, 113, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Majumder, Q.H.; Ahsan, F. Inhalable large porous microspheres of low molecular weight heparin: In vitro and in vivo evaluation. J. Control. Release 2008, 128, 224–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko¨se, G.T.; Arica, M.Y.; Hasirci, V. Low-molecular-weight heparin conjugated liposomes with improved stability and hemocompatibility. Drug Deliv. 1998, 5, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Shaimaa, S.I.; Rihab, O.; Gehanne, A.S.A.; Nahed, D.M.; Ahmed-Shawky, G. Low molecular weight heparins for current and future uses: Approaches for micro- and nano-particulate delivery. Drug Deliv. 2016, 23, 2661–2667. [Google Scholar]
- Paliwal, R.; Paliwal, S.R.; Agrawal, G.P.; Vyas, S.P. Recent advances in search of oral heparin therapeutics. Med. Res. Rev. 2012, 32, 388–409. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.W.; Song, Y.K.; Jee, J.P. Effect of subconjunctivally injected, liposome-bound, low-molecular-weight heparin on the absorption rate of subconjunctival hemorrhage in rabbits. Invest. Ophthalmol. Vis. Sci. 2006, 47, 3968–3974. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Anand, S.S.; Halperin, J.L.; Fuster, V. Guide to anticoagulant therapy, Heparin: A statement for healthcare professionals from the American Heart Association. Circulation 2001, 103, 2994–3018. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; Vecchietti, D.; Citterio, L. Structural features of lowmolecular-weight heparins affecting their affinity to antithrombin. Thromb. Haemost. 2009, 102, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.A. Heparin binding and neutralizing proteins. In Heparin: Chemical and Biological Properties Clinical Applications Lane; David, A., Lindahl, U., Eds.; RC Press: Boca Raton, FL, USA, 1989; Volume 1, pp. 363–391. [Google Scholar]
- Young, E.; Prins, M.; Levine, M.N.; Hirsh, J. Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb. Haemost. 1992, 67, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Weitz, J.I. Low-molecular-weight heparins. N. Engl. J. Med. 1997, 337, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.K.; Kim, C.K. Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials 2006, 27, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Garcia, D.A.; Baglin, T.P.; Weitz, J.I.; Samama, M.M. Parenteral anticoagulants: Antithrombotic therapy and prevention of thrombosis, 9th ed: american college of chest physicians evidence-based clinical practice guidelines. Chest 2012, 141, e24S–e43S. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.B. Thromboembolic disease. In Comprehensive Pharmacy Review, 4th ed.; Shargel, L., Mutnick, A.H., Souney, P.F., Swanson, L.N., Eds.; Lippincott W&W: Maryland, MD, USA, 2001; pp. 754–767. [Google Scholar]
- Hirsh, J.; van Aken, W.G.; Gallus, A.S. Heparin kinetics in venous thrombosis and pulmonary embolism. Circulation 1976, 53, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, F.; Yang, T.; Khan, M.A.; Ahsan, F. Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin. J. Pharm. Sci. 2004, 93, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Ahsan, F. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J. Pharm. Sci. 2010, 99, 4554–4564. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S. Care of patients receiving long-term anticoagulant therapy. New. Engl. J. Med. 2003, 349, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Kher, A.; Samama, M.M. Primary and secondary prophylaxis of venous thromboembolism with low-molecular-weight heparins: Prolonged thromboprophylaxis, an alternative to vitamin K antagonists. J. Thromb. Haemost. 2005, 3, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Debourdeau, P.; Elalamy, I.; de Raignac, A. Long-term use of daily subcutaneous low molecular weight heparin in cancer patients with venous thromboembolism: why hesitate any longer? Support. Care Cancer 2008, 16, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.J.; Moores, LK.; Jimenez, D. Pulmonary embolism: Current and new treatment options. Curr. Med. Res. Opin. 2014, 30, 1975–1989. [Google Scholar] [CrossRef] [PubMed]
- Campo, C.; Molinari, J.F.; Ungo, J.; Ahmed, T. Molecular-weight dependent effects of nonanticoagulant heparins on allergic airway responses. J. Appl. Physiol. 1999, 86, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Ungo, J.; Zhou, M.; Campo, C. Inhibition of allergic late airway responses by inhaled heparin-derived oligosaccharides. J. Appl. Physiol. 2000, 88, 1721–1729. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.P.; Narkowicz, C.; Jacobson, G.A. Investigation of the effect of heating on the chemistry and antifactor Xa activity of enoxaparin. J. Pharm. Sci. 2009, 98, 1700–1711. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ortega, F.; Rodrı’guez, G.; Aguilar, M.R. Encapsulation of low molecular weight heparin (bemiparin) into polymeric NPs obtained from cationic block copolymers: properties and cell activity. J. Mater. Chem. B 2013, 1, 850–860. [Google Scholar] [CrossRef]
- Salatin, S.; Khosroushahi, A.Y. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med. 2017, 21, 1668–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miorgi-Coll, S.; Blunt-Foley, H.J.; Hutchinson, P.; Carpenter, K.L.H. Heparin-gold nanoparticles for enhanced microdialysis sampling. Anal. Bioanal. Chem. 2017, 409, 5031–5042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.; Thomas, C.; Ahsan, F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J. Pharm. Sci. 2007, 96, 2090–2106. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Xing, Y.; Zheng, Y. pH-responsive thiolated chitosan NPs for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation. Drug Deliv. 2014, 28, 1–10. [Google Scholar]
- Hwang, S.R.; Byun, Y. Advances in oral macromolecular drug delivery. Expert Opin. Drug Deliv. 2014, 11, 1955–1967. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhao, G.; Liu, D. Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc. Natl. Acad. Sci. USA 2004, 101, 9867–9872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettiaratchi, M.H.; Rouse, T.; Chou, C.; Krishnan, L.; Stevens, H.Y.; Li, M.A.; McDevitt, T.C.; Guldberg, R.E. Enhanced in vivo retention of low dose BMP-2 via heparin microparticle delivery does not accelerate bone healing in a critically sized femoral defect. Acta Biomater. 2017, 59, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Pellequer, Y.; Meissner, Y.; Ubrich, N.; Lamprecht, A. Epithelial heparin delivery via microspheres mitigates experimental colitis in mice. J. Pharmacol. Exp. Ther. 2007, 321, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.; Ahsan, F.; Meezan, E.; Pillion, D.J. Nasal administration of low molecular weight heparin. J. Pharm. Sci. 2002, 91, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Hussain, A.; Paulson, J. Cyclodextrins in nasal delivery of low-molecular-weight heparins: In vivo and in vitro studies. Pharm. Res. 2004, 21, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, A.; Ubrich, N.; Maincent, P. Oral low molecular weight heparin delivery by MPs from complex coacervation. Eur. J. Pharm. Biopharm. 2007, 67, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Meissner, Y.; Ubrich, N.; El Ghazouani, F. Low molecular weight heparin loaded pH-sensitive MPs. Int. J. Pharm. 2007, 335, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Motlekar, N.A.; Youan, B.B. Optimization of experimental parameters for the production of LMWH-loaded polymeric microspheres. Drug Des. Develop. Ther. 2008, 2, 39–47. [Google Scholar]
- Viehof, A.; Lamprecht, A. Oral delivery of low molecular weight heparin by polyaminomethacrylate coacervates. Pharm. Res. 2013, 30, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Lanke, S.S.; Gayakwad, S.G.; Strom, J.G.; D’souza, M.J. Oral delivery of low molecular weight heparin microspheres prepared using biodegradable polymer matrix system. J. Microencapsul. 2009, 26, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Firoz, S.; Sarasija, S.; Yajaman, S. Long acting parenteral formulation of heparin. J. Pharm. Res. 2009, 2, 1547–1549. [Google Scholar]
- Liu, T.; Li, X.; Liu, S.; Tang, X.; Wang, X.; Gong, T.; Hu, Y.; Ding, H.; Luo, X.; Pan, C.; et al. Surface modification with micropatterned heparin/poly-l-lysine nanoparticles to direct platelet and endothelial cell behavior. J. Biomater. Tissue Eng. 2017, 7, 962–968. [Google Scholar] [CrossRef]
- Yazeji, T.; Moulari, B.; Beduneau, A.; Stein, V.; Dietrich, D.; Pellequer, Y.; Lamprecht, A. Nanoparticle-based delivery enhances anti-inflammatory effect of low molecular weight heparin in experimental ulcerative colitis. Drug Deliv. 2017, 24, 811–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, L.B.; Huber, S.C.; Barnabé, A.; Bassora, F.D.S.; Paixão, D.S.; Duran, N.; Annichino-Bizzacchi, J.M. Characterization of pcl and chitosan nanoparticles as carriers of enoxaparin and its antithrombotic effect in animal models of venous thrombosis. J. Nanotechnol. 2017. [Google Scholar] [CrossRef]
- Garg, A.; Sharma, R.; Pandey, V.; Patel, V.; Yadav, A.K. Heparin-tailored biopolymeric nanocarriers in site-specific delivery: A systematic review. Crit. Rev. Ther. Drug 2017, 34, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Hallan, S.S.; Kaur, P.; Kaur, V. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif. Cells Nanomed. Biotechnol. 2014, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Nitta, S.K.; Numata, K. Biopolymer-based NPs for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 2013, 14, 1629–1654. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Gupta, V.; Ahsan, F. Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur. J. Pharm. Sci. 2009, 38, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Ahsan, F. Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm. Res. 2009, 26, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Oyarzun-Ampuero, F.A.; Brea, J.; Loza, M.I. Chitosan hyaluronic acid NPs loaded with heparin for the treatment of asthma. Int. J. Pharm. 2009, 381, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, R.; Paliwal, S.R.; Agrawal, G.P.; Vyas, S.P. Biomimetic solid lipid NPs for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: In vitro and in vivo evaluation. Mol. Pharm. 2011, 8, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Mao, S.; Mei, D.; Kissel, T. Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur. J. Pharm. Biopharm. 2008, 69, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Mao, S.; Wang, Y. Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int. J. Pharm. 2010, 386, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, L.; Sun, Y. Exploration of hydrophobic modification degree of chitosan-based nanocomplexes on the oral delivery of enoxaparin. Eur. J. Pharm. Sci. 2013, 50, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Loira-Pastoriza, C.; Sapin-Minet, A.; Diab, R. Low molecular weight heparin gels, based on NPs, for topical delivery. Int. J. Pharm. 2012, 426, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Nyiawung, D.; Silber, A. Comparative studies on chitosan and polylactic-co-glycolic acid incorporated NPs of low molecular weight heparin. AAPS PharmSciTech 2012, 13, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
No. | Procedure | LMWH | Average Molecular Weight | Trade Names |
---|---|---|---|---|
1 | Oxidative depolymerisation with hydrogen peroxide | Ardeparin | 5500 | Normiflo® |
2 | Deaminative cleavage with isoamyl nitrite | Certoparin | 5400 | Sandoparin® |
3 | Benzylation followed by alkaline hydrolysis | Enoxaparin | 4500 | Lovenox® and Clexane® |
4 | Oxidative depolymerisation with Cu2+ and hydrogen peroxide | Parnaparin | 5000 | Fluxum® |
5 | Heparinase digestion | Tinzaparin | 6500 | Innohep® and Logiparin® |
6 | Deaminative cleavage with nitrous acid | Nadroparin | 4300 | Fraxiparin® |
7 | Nitrous acid deaminative cleavage | Dalteparin | 5000 | Fragmin® |
8 | Nitrous acid depolymerization, purification through chromatography | Reviparin | 4400 | Clivarin® |
9 | β-elimination, and fractionation | Bemiparin | 3600 | Ivor® |
Features | uFH | LMWH | References |
---|---|---|---|
Availability for anti-thrombin reaction | 30% | 90–100% | [48,51] |
Average molecular weight (range) | 15 kDa (4000–30,000) | 4.5 kDa (2000–10,000) | [26] |
Half-life (t1/2) | Short (About 1 h (high variability)) | Long (3–4 h) (predictable) | [35] |
Bioavailability | Low (due to binding with plasma proteins) | Higher than uFH | [35] |
Dosage regimen | Frequent dosing (I.V. once/6 h or IV infusion) | Less frequent dosing (IV/SC once/twice daily) | [21] |
Clearance mode | Hepatic | Renal largely (thus contraindicated in renal patients) | [48] |
Bleeding tendency | High | Lower than uFH | [59] |
Thrombocytopenia initiation | High | Lower than uFH | [60] |
Osteoporosis propensity | High | Lower than uFH | [13] |
Therapeutic response | Variable | Predictable | [34] |
Anticoagulant effect | Reversible with protamine sulfate | Limited effect of protamine sulfate | [59] |
Laboratory monitoring | Essential | Not required | [59] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, F.; Wan, X.; Wu, G.; Kesse, S.; Wang, S.; He, S. Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes. Molecules 2018, 23, 1757. https://doi.org/10.3390/molecules23071757
Akhtar F, Wan X, Wu G, Kesse S, Wang S, He S. Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes. Molecules. 2018; 23(7):1757. https://doi.org/10.3390/molecules23071757
Chicago/Turabian StyleAkhtar, Fahad, Xinyu Wan, Gang Wu, Samuel Kesse, Shaoda Wang, and Shuying He. 2018. "Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes" Molecules 23, no. 7: 1757. https://doi.org/10.3390/molecules23071757
APA StyleAkhtar, F., Wan, X., Wu, G., Kesse, S., Wang, S., & He, S. (2018). Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes. Molecules, 23(7), 1757. https://doi.org/10.3390/molecules23071757