Assessment of the Antioxidant/Hypolipidemic Relationship of Sideritis hyssopifolia in an Experimental Animal Model
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Properties
2.2. Effects on Lipid Profile
3. Discussion
4. Materials and Methods
4.1. Evaluation of the Antioxidant Properties
4.1.1. Reagents
4.1.2. Plant Material and Preparation of Sideritis Infusions
4.1.3. Determination of Antioxidant Activity
4.2. Evaluation of the Effects on Lipid Profile
4.2.1. Animals
4.2.2. Blood Sampling
4.2.3. Statistical Evaluation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef]
- Nordestgaard, B.G. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: New insights from Epidemiology, Genetics, and Biology. Circ. Res. 2016, 118, 547–563. [Google Scholar] [CrossRef]
- Ouweneel, A.B.; Van Eck, M. Lipoproteins as modulators of atherothrombosis: From endothelial function to primary and secondary coagulation. Vascul. Pharmacol. 2015, 82, 1–10. [Google Scholar] [CrossRef]
- Riaz, M.; Zia-Ul-Haq, M.; Saad, B. Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects; Springer: Berlin, Germany, 2016. [Google Scholar]
- Griendling, K.K.; Fitzgerald, G.A. Oxidative stress and cardiovascular injury part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003, 108, 1912–1916. [Google Scholar] [CrossRef]
- Ramirez-Tortosa, M.C.; Mesa, M.D.; Aguilera, M.C.; Quiles, J.L.; Baró, L.; Ramirez-Tortosa, C.L.; Mattinez-Victoria, E.; Gil, A. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 1999, 147, 371–378. [Google Scholar] [CrossRef]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef]
- Steinberg, D. Low density lipoprotein oxidation and its pathobiological significance. J. Biol. Chem. 1997, 272, 20963–20966. [Google Scholar] [CrossRef]
- Meagher, E.A. Addressing cardiovascular risk beyond low-density lipoprotein cholesterol: The high-density lipoprotein cholesterol story. Curr. Cardiol. Rep. 2004, 6, 457–463. [Google Scholar] [CrossRef]
- Nofer, J.R.; Kehrel, B.; Fobker, M.; Levkau, B.; Assmann, G.; von Eckardstein, A. HDL and arteriosclerosis: Beyond reverse cholesterol transport. Atheroesclerosis 2002, 161, 1–16. [Google Scholar] [CrossRef]
- Di Matteo, V.; Esposito, E. Biochemical and therapeutic effects of antioxidants in the treatment of Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. Curr. Drug Targets CNS Neurol. Disord. 2003, 2, 95–107. [Google Scholar] [CrossRef]
- Gerber, M.; Boutron-Rault, M.C.; Hercberg, S.; Riboli, E.; Scalbert, A.; Siess, M.H. Food and cancer: State of the art about the protective effect of fruits and vegetables. Bull. Cancer 2002, 89, 293–312. [Google Scholar]
- Zia-Ul-Haq, M.; Ahmad, S.; Bukhari, S.A.; Amarowicz, R.; Ercisli, S.; Jaafar, H.Z. Compositional studies and biological activities of some mash bean (Vigna mungo (L.) Hepper) cultivars commonly consumed in Pakistan. Biol. Res. 2014, 47, 23. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Riaz, M.; De Feo, V.; Haafar, H.Z.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef]
- Anderson, J.V.; Palombo, R.D.; Earl, R. Position of the American Dietetic Association: The role of nutrition in health promotion and disease prevention programs. J. Am. Diet. Assoc. 1998, 98, 205–208. [Google Scholar]
- Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Krummel, D. Role of nutrition in the prevention and treatment of coronary heart disease in women. J. Am. Diet. Assoc. 1993, 93, 987–993. [Google Scholar] [CrossRef]
- Amensour, M.; Sendra, E.; Abrini, J.; Bouhdid, S. Total phenolic content and antioxidant activity of myrtle (Myrtus communis) extracts. Nat. Prod. Commun. 2009, 4, 819–824. [Google Scholar] [CrossRef]
- Prasad, K. A study on regression of hypercholesterolemic atherosclerosis in rabbits by flax lignan complex. J. Cardiovasc. Pharmacol. Ther. 2007, 12, 304–313. [Google Scholar] [CrossRef]
- Gey, K.F.; Stahelin, H.B.; Eichholzer, M. Poor plasma status of carotene and vitamin C is associated with higher mortality from ischemic heart disease and stroke. Basel prospective study. Clin. Investig. 1993, 71, 3–6. [Google Scholar] [CrossRef]
- Riemersma, R.A.; Wood, D.A.; Macintyre, C.C.; Elton, R.A.; Gey, K.F.; Oliver, M.F. Risk of angina pectoris and plasma concentration of vitamins A, C and E and carotene. Lancet 1993, 337, 1–5. [Google Scholar] [CrossRef]
- Arts, I.C.; Hollman, P.C. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 2005, 81, 317–325. [Google Scholar] [CrossRef]
- Lee, Y.S.; Yang, J.H.; Bae, M.J.; Yoo, W.K.; Ye, S.; Xue, C.C.; Li, C.G. Antioxidant and anti-hypercholesterolaemic activities of Wasabia japonica. Evid. Based Complement. Altern. Med. 2010, 7, 459–464. [Google Scholar] [CrossRef]
- Ozdemir, B.; Ekbul, A.; Topal, N.B.; Sarandöl, E.; Sağ, S.; Başer, K.H.; Cordan, J.; Güllülü, S.; Tuncel, E.; Baran, I.; et al. Effects of Origanum onites on endothelial function and serum biochemical markers in hyperlipidaemic patients. J. Int. Med. Res. 2008, 36, 1326–1334. [Google Scholar] [CrossRef]
- Kitic, D.; Brankovic, S.; Radenkovic, M.; Savikin, K.; Zdunic, G.; Kocic, B.; Velickovic-Radovanovic, R. Hypotensive, vasorelaxant and cardiodepressant activities of the ethanol extract of Sideritis raeseri spp. raeseri Boiss & Heldr. J. Physiol. Pharmacol. 2012, 63, 531–535. [Google Scholar]
- Tadić, V.; Bojović, D.; Arsić, I.; Dorđević, S.; Aksentijevic, K.; Stamenić, M.; Janković, S. Chemical and antimicrobial evaluation of supercritical and conventional Sideritis scardica Griseb., Lamiaceae extracts. Molecules 2012, 17, 2683–2703. [Google Scholar] [CrossRef]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities- A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef]
- Dimitrios, B. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Samanidou, V.; Tsagiannidis, A.; Sarakatsianos, I. Simultaneous determination of polyphenols and major purine alkaloids in Greek Sideritis species, herbal extracts, green tea, black tea, and coffee by high-performance liquid chromatography-diode array detection. J. Sep. Sci. 2012, 35, 608–615. [Google Scholar] [CrossRef]
- Barboza, L.N.; Lívero, F.A.; Prando, T.B.; Ribeiro, R.C.; Lourenço, E.L.; Budel, J.M.; de Souza, L.M.; Acco, A.; Dalsenter, P.R.; Gasparotto, A. Atheroprotective effects of Cuphea carthagenensis (Jacq.) J.F. Macbr. in New Zealand rabbits fed with cholesterol-rich diet. J. Ethnopharmacol. 2016, 187, 134–145. [Google Scholar] [CrossRef]
- Zhang, J.; Liang, R.; Wang, L.; Yan, R.; Hou, R.; Gao, S.; Yanq, B. Effects of an aqueous extract of Crataegus pinnatifida Bge. var. major N.E.Br. fruit on experimental atherosclerosis in rats. J. Ethnopharmacol. 2013, 148, 563–569. [Google Scholar] [CrossRef]
- Al-Naqeep, G.; Al-Zubairi, A.S.; Ismail, M.; Amom, Z.H.; Esa, N.M. Antiatherogenic potential of Nigella sativa seeds and oil in diet-induced hypercholesterolemia in rabbits. Evid. Based Complement. Altern. Med. 2011, 2011, 213628. [Google Scholar] [CrossRef]
- Ghannadi, A.; Movahedian, A.; Jannesary, Z. Hypocholesterolemic effects of Balangu (Lallemantia royleana) seeds in the rabbits fed on a cholesterol-containing diet. Avicenna J. Phytomed. 2015, 5, 167–173. [Google Scholar] [PubMed]
- Rekha, C.; Poornima, G.; Manasa, M.; Abhipsa, V.; Pavithra, J.; Vijay, H.T.; Prashith, T.R. Ascorbic acid, total phenol content and antioxidant activity of fresh juices of four ripe and unripe citrus fruits. Chem. Sci. Trans. 2012, 1, 303–310. [Google Scholar] [CrossRef]
- Gokce, N.; Keaney, J.F.; Frei, B.; Holbrook, M.; Olesiak, M.; Zachariah, B.J.; Leeuwenburgh, C.; Heinecke, J.W.; Vita, J.A. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999, 99, 3234–3240. [Google Scholar] [CrossRef]
- Levine, G.N.; Frei, B.; Koulouris, S.N.; Gerhard, M.D.; Keaney, J.F.; Vita, J.A. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1996, 93, 1107–1113. [Google Scholar] [CrossRef]
- Protogerou, A.D.; Lekakis, J.P.; Kontoyanni, D.D.; Stamatelopoulos, K.S.; Tsotsoros, N.D.; Papaioannou, T.G.; Tryfonopoulos, D.J.; Papamichael, C.M.; Stamatelopoulos, S.F. Effect of ascorbic acid on forearm reactive hyperaemia in patients with hypercholesterolaemia. Eur. J. Cardiovasc. Prev. Rehabil. 2004, 11, 149–154. [Google Scholar] [CrossRef]
- Uzun, A.; Yener, U.; Cicek, O.F.; Yener, O.; Yalcinkaya, A.; Diken, A.; Ozkan, T.; Turkvatan, A.; Ulas, M. Does vitamin C or its combination with vitamin e improve radial artery endothelium-dependent vasodilatation in patients awaiting coronary artery bypass surgery? Cardiovasc. J. Afr. 2013, 24, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Ting, H.H.; Timimi, F.K.; Boles, K.S.; Creager, S.J.; Ganz, P.; Creager, M.A. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996, 97, 22–28. [Google Scholar] [CrossRef]
- Frei, B.; England, L.; Ames, B.N. Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. USA 1989, 86, 6377–6381. [Google Scholar] [CrossRef]
- Baskaran, G.; Salvamani, S.; Azlan, A.; Ahmad, S.A.; Yeap, S.K.; Shukor, M.Y. Hypocholesterolemic and antiatherosclerotic potential of Basella alba leaf extract in hypercholesterolemia-induced rabbits. Evid. Based Complement. Altern. Med. 2015, 2015, 751714. [Google Scholar] [CrossRef]
- Boban, P.T.; Nambisan, B.; Sudhakaran, P.R. Dietary mucilage promotes regression of atheromatous lesions in hypercholesterolemic rabbits. Phytother. Res. 2009, 23, 725–730. [Google Scholar] [CrossRef]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 89. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, F.; Liu, Y.; Zhang, C.; Yu, H.; Zhang, Y.; Zhao, Y. Aqueous extract of rhubarb stabilizes vulnerable atherosclerotic plaques due to depression of inflammation and lipid accumulation. Phytother. Res. 2008, 22, 935–942. [Google Scholar] [CrossRef]
- Gey, K.F. Ten-year retrospective on the antioxidant hypothesis of arteriosclerosis: Threshold plasma levels of antioxidant micronutrients related to minimum cardiovascular risk. J. Nutr. Biochem. 1995, 6, 206–236. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Wong, S.K.; Lim, K.K.; Tan, S.P.; Lianto, F.S.; Yong, M.Y. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem. 2008, 113, 166–172. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Chong, K.L.; Tan, J.B.L.; Wong, S.K. Antioxidant properties of tropical and temperate herbal teas. J. Food Comp. Anal. 2010, 23, 185–189. [Google Scholar] [CrossRef]
- Chew, Y.L.; Goh, J.K.; Lim, Y.Y. Assessment of in vitro antioxidant capacity and polyphenolic composition of selected medicinal herbs from Leguminosae family in peninsular Malaysia. Food Chem. 2009, 116, 13–18. [Google Scholar] [CrossRef]
- Gabrieli, C.N.; Kelafas, P.G.; Kokkalou, E.L. Antioxidant activity of flavonoids from Sideritis raeseri. J. Ethnopharmacol. 2005, 96, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Lyon, M.L.; Díaz-Lanza, A.M.; Bernabé, M.; Villaescusa-Castillo, L. Flavone glycosides containing acetylated sugars from Sideritis hyssopifolia. Magn. Reson. Chem. 2000, 38, 684–687. [Google Scholar] [CrossRef]
- Fan, J.; Kitajima, S.; Watanabe, T.; Xu, J.; Zhang, J.; Liu, E.; Chen, Y.E. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol. Ther. 2015, 146, 104–119. [Google Scholar] [CrossRef]
- Formisano, C.; Oliviero, F.; Rigano, D.; Arnold, N.A.; Senatore, F. Comparative Chemical Composition and Antioxidant Properties of the Essential Oils of three Sideritis libanotica Subspecies. Nat. Prod. Commun. 2015, 10, 1075–1078. [Google Scholar] [CrossRef]
- Georgakopoulou, V.; Dimou, C.; Karantonis, H.C. In vitro antioxidant, antithrombotic, antiatherogenic and antidiabetic activities of Urtica dioica, Sideritis euboea and Cistus creticus water extracts and investigation of pasta fortification with the most bioactive one. Curr. Pharm. Biotechnol. 2019, 20, 1–14. [Google Scholar] [CrossRef]
- Jeremic, I.; Petricevic, S.; Tadic, V.; Petrovic, D.; Tosic, J.; Stanojevic, Z.; Petronijevic, M.; Vidicevic, S.; Trajkovic, V.; Isakovic, A. Effects of Sideritis scardica Extract on Glucose Tolerance, Triglyceride Levels and Markers of Oxidative Stress in Ovariectomized Rats. Planta Med. 2019, 85, 465–472. [Google Scholar] [CrossRef]
- Ivanova, D.; Gerova, D.; Chervenkov, T.; Yankova, T. Polyphenols and antioxidant capacity of Bulgarian medicinal plants. J. Ethnopharmacol. 2005, 96, 145–150. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Hassan, H.A.; Abdel-Wahhab, M.A. Effect of soybean oil on atherogenic metabolic risks associated with estrogen deficiency in ovariectomized rats. J. Physiol. Biochem. 2012, 68, 247–253. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
IC50 (µg/mL) | AEAC (g/100 g) | |
---|---|---|
Ascorbic acid | 2.025 ± 0.095 | - |
Sideritis hyssopifolia | ||
3 min | 112.1 ± 4.0 | 1.808 ± 0.068 |
5 min | 96.9 ± 2.9 | 2.090 ± 0.063 |
10 min | 83.7 ± 2.5 | 2.419 ± 0.071 |
0 Weeks | 6 Weeks | |||||||
---|---|---|---|---|---|---|---|---|
Groups | Control | Cholesterol | Sideritis | Simvastatin | Control | Cholesterol | Sideritis | Simvastatin |
TC (mg/dl) | 89 ± 10 | 84 ± 12 | 86.1 ± 9.4 | 83 ± 11 | 81.8 ± 8.8 | 460 ± 67 | 366 ± 61 | 348 ± 62 |
HDL-c (mg/dl) | 24.3 ± 3.1 | 23.8 ± 2.9 | 25.2 ± 3.7 | 25.8 ± 3.4 | 22.6 ± 3.9 | 58.2 ± 7.4 | 49.4 ± 9.6 | 49.1 ± 5.1 |
LDL-c (mg/dl) | 47.9 ± 9.1 | 50.2 ± 8.6 | 5 ± 13 | 48.8 ± 9.4 | 46.4 ± 8.7 | 179 ± 23 | 148 ± 20 | 133 ± 22 |
TG (mg/dl) | 101 ± 15 | 105 ± 13 | 99 ± 19 | 103± 16 | 97 ± 17 | 173 ± 19 | 146 ± 13 | 137 ± 15 |
AI | 2.43 ± 0.14 | 2.61 ± 0.16 | 2.37 ± 0.15 | 2.54 ± 0.12 | 2.58 ± 0.14 | 7.06 ± 0.53 | 4.01 ± 0.32 | 3.37 ± 0.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coto, E.; Fernandez, N.; Garcia, J.J.; Diez, M.J.; Sahagun, A.M.; Sierra, M. Assessment of the Antioxidant/Hypolipidemic Relationship of Sideritis hyssopifolia in an Experimental Animal Model. Molecules 2019, 24, 2049. https://doi.org/10.3390/molecules24112049
Coto E, Fernandez N, Garcia JJ, Diez MJ, Sahagun AM, Sierra M. Assessment of the Antioxidant/Hypolipidemic Relationship of Sideritis hyssopifolia in an Experimental Animal Model. Molecules. 2019; 24(11):2049. https://doi.org/10.3390/molecules24112049
Chicago/Turabian StyleCoto, Esther, Nelida Fernandez, Juan Jose Garcia, M. Jose Diez, Ana Maria Sahagun, and Matilde Sierra. 2019. "Assessment of the Antioxidant/Hypolipidemic Relationship of Sideritis hyssopifolia in an Experimental Animal Model" Molecules 24, no. 11: 2049. https://doi.org/10.3390/molecules24112049
APA StyleCoto, E., Fernandez, N., Garcia, J. J., Diez, M. J., Sahagun, A. M., & Sierra, M. (2019). Assessment of the Antioxidant/Hypolipidemic Relationship of Sideritis hyssopifolia in an Experimental Animal Model. Molecules, 24(11), 2049. https://doi.org/10.3390/molecules24112049