Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication
Abstract
:1. Introduction
2. Tiglianes and Ingenanes
3. Daphnanes
4. Jatrophanes
5. Myrsinanes and Premyrsinanes
6. Flexibilanes
7. Protein Kinase C (PKCs) as Targets of Phorbol Esters for Inhibition of Chikungunya Virus (CHIKV)
8. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Singh, S.K.; Unni, S.K. Chikungunya virus: Host pathogen interaction. Rev. Med. Virol. 2011, 21, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Abdelnabi, R.; Neyts, J.; Delang, L. Towards antivirals against chikungunya virus. Antivir. Res. 2015, 121, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.-W.; Su, X.-H.; Kiyota, H. Chemical and Pharmacological Research of the Plants in Genus Euphorbia. Chem. Rev. 2008, 108, 4295–4327. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-B.; Wang, X.-Y.; Liu, L.-P.; Qin, G.-W.; Kang, T.-G. Tigliane Diterpenoids from the Euphorbiaceae and Thymelaeaceae Families. Chem. Rev. 2015, 115, 2975–3011. [Google Scholar] [CrossRef] [PubMed]
- Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [PubMed]
- Vasas, A.; Rédei, D.; Csupor, D.; Molnár, J.; Hohmann, J. Diterpenes from European Euphorbia species serving as prototypes for natural-product-based drug discovery. Eur. J. Org. Chem. 2012, 27, 5115–5130. [Google Scholar] [CrossRef]
- Appendino, G. Ingenane Diterpenoids. In Progress in the Chemistry of Organic Natural Products; Springer: Columbus, OH, USA, 2016; Volume 35, pp. 1–90. [Google Scholar]
- Webb, B.L.J.; Hirst, S.J.; Giembycz, M.A. Protein kinase C isoenzymes: A review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br. J. Pharm. 2000, 130, 1433–1452. [Google Scholar] [CrossRef]
- Durán-Peña, M.J.; Botubol Ares, J.M.; Collado, I.G.; Hernández-Galán, R. Biologically active diterpenes containing a gem-dimethylcyclopropane subunit: An intriguing source of PKC modulators. Nat. Prod. Rep. 2014, 31, 940–952. [Google Scholar] [CrossRef]
- Gustafson, K.R.; Cardellina, J.H.; McMahon, J.B.; Gulakowski, R.J.; Ishitoya, J.; Szallasi, Z.; Lewin, N.; Blumberg, P.; Weislow, O.S.; Beutler, J.A.; et al. A Nonpromoting Phorbol from the Samoan Medicinal Plant Homalanthus Nutans Inhibits Cell Killing by HIV-1. J. Med. Chem. 1992, 35, 1978–1986. [Google Scholar] [CrossRef]
- Kinghorn, A.D. Plant-derived anti-HIV agents. In Anti-AIDS Drug Development; Mohan, P., Masanori, B., Eds.; CRC Press: Chur, Switzerland, 1995; pp. 211–237. [Google Scholar]
- Erickson, K.L.; Beutler, J.A.; Cardellina, J.H.; McMahon, J.B.; Newman, D.J.; Boyd, M.R. A Novel phorbol ester from excoecaria agallocha. J. Nat. Prod. 1995, 58, 769–772. [Google Scholar] [CrossRef]
- Hossain Chowdhury, M.I.; Koyanagi, Y.; Kobayashi, S.; Hamamoto, Y.; Yoshiyama, H.; Yoshida, T.; Yamamoto, N. The phorbol ester TPA strongly inhibits HIV-1-induced syncytia formation but enhances virus production: Possible involvement of protein kinase C pathway. Virology 1990, 176, 126–132. [Google Scholar] [CrossRef]
- Gulakowski, R.J.; McMahon, J.B.; Buckheit, R.W.; Gustafson, K.R.; Boyd, M.R. Antireplicative and anticytopathic activities of prostratin, a non-tumor-promoting phorbol ester, against human immunodeficiency virus (HIV). Antivir. Res. 1997, 33, 87–97. [Google Scholar] [CrossRef]
- Bocklandt, S.; Blumberg, P.M.; Hamer, D.H. Activation of latent HIV-1 expression by the potent anti-tumor promoter 12-deoxyphorbol 13-phenylacetate. Antivir. Res. 2003, 59, 89–98. [Google Scholar] [CrossRef]
- Nothias-Scaglia, L.F.; Pannecouque, C.; Renucci, F.; Delang, L.; Neyts, J.; Roussi, F.; Costa, J.; Leyssen, P.; Litaudon, M.; Paolini, J. Antiviral Activity of Diterpene Esters on Chikungunya Virus and HIV Replication. J. Nat. Prod. 2015, 78, 1277–1283. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Z.; Zhang, X.; Ma, Q.Y.; Peng, H.; Zheng, Y.T.; Hu, J.M.; Dai, H.F.; Zhou, J.; Zhao, Y.X. Anti-HIV-1 tigliane diterpenoids from Excoecaria acertiflia Didr. Fitoterapia 2014, 95, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Matsuya, Y.; Yu, Z.; Yamamoto, N.; Mori, M.; Saito, H.; Takeuchi, M.; Ito, M.; Nemoto, H. Synthesis of new phorbol derivatives having ethereal side chain and evaluation of their anti-HIV activity. Bioorg. Med. Chem. 2005, 13, 4383–4388. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Duffhues, G.; Q. Vo, M.; Perez, M.; A. Calzado, M.; Moreno, S.; Appendino, G.; Munoz, E. Activation of Latent HIV-1 Expression by Protein Kinase C Agonists. A Novel Therapeutic Approach to Eradicate HIV-1 Reservoirs. Curr. Drug Targets 2012, 12, 348–356. [Google Scholar] [CrossRef]
- Hezareh, M.; Moukil, M.A.; Szanto, I.; Pondarzewski, M.; Mouche, S.; Cherix, N.; Brown, S.J.; Carpentier, J.L.; Foti, M. Mechanisms of HIV receptor and co-receptor down-regulation by prostratin: Role of conventional and novel PKC isoforms. Antivir. Chem. Chemother. 2004, 15, 207–222. [Google Scholar] [CrossRef]
- Bourjot, M.; Delang, L.; Nguyen, V.H.; Neyts, J.; Guéritte, F.; Leyssen, P.; Litaudon, M. Prostratin and 12-O-tetradecanoylphorbol 13-acetate are potent and selective inhibitors of chikungunya virus replication. J. Nat. Prod. 2012, 75, 2183–2187. [Google Scholar] [CrossRef]
- Bourjot, M.; Leyssen, P.; Neyts, J.; Dumontet, V.; Litaudon, M. Trigocherrierin A, a potent inhibitor of chikungunya virus replication. Molecules 2014, 19, 3617–3627. [Google Scholar] [CrossRef]
- Allard, P.M.; Leyssen, P.; Martin, M.T.; Bourjot, M.; Dumontet, V.; Eydoux, C.; Guillemot, J.C.; Canard, B.; Poullain, C.; Guéritte, F.; et al. Antiviral chlorinated daphnane diterpenoid orthoesters from the bark and wood of Trigonostemon cherrieri. Phytochemistry 2012, 84, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Leyssen, P.; Smadja, J.; Rasoanaivo, P.; Gurib-Fakim, A.; Mahomoodally, M.F.; Canard, B.; Guillemot, J.C.; Litaudon, M.; Guéritte, F. Biodiversity as a Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. In Novel Plant Bioresources: Applications in Food, Medicine and Cosmetics, 1st ed.; Gurib-Fakim, A., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 151–161. [Google Scholar]
- Corlay, N.; Delang, L.; Girard-Valenciennes, E.; Neyts, J.; Clerc, P.; Smadja, J.; Guéritte, F.; Leyssen, P.; Litaudon, M. Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fitoterapia 2014, 97, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Nothias, L.F.; Boutet-Mercey, S.; Cachet, X.; De La Torre, E.; Laboureur, L.; Gallard, J.F.; Retailleau, P.; Brunelle, A.; Dorrestein, P.C.; Costa, J.; et al. Environmentally Friendly Procedure Based on Supercritical Fluid Chromatography and Tandem Mass Spectrometry Molecular Networking for the Discovery of Potent Antiviral Compounds from Euphorbia semiperfoliata. J. Nat. Prod. 2017, 80, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
- Olivon, F.; Palenzuela, H.; Girard-Valenciennes, E.; Neyts, J.; Pannecouque, C.; Roussi, F.; Grondin, I.; Leyssen, P.; Litaudon, M. Antiviral Activity of Flexibilane and Tigliane Diterpenoids from Stillingia lineata. J. Nat. Prod. 2015, 78, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Olivon, F.; Allard, P.M.; Koval, A.; Righi, D.; Genta-Jouve, G.; Neyts, J.; Apel, C.; Pannecouque, C.; Nothias, L.F.; Cachet, X.; et al. Bioactive Natural Products Prioritization Using Massive Multi-Informational Molecular Networks. Acs Chem. Biol. 2017, 12, 2644–2651. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.; Nothias, L.F.; Retailleau, P.; Costa, J.; Roussi, F.; Neyts, J.; Leyssen, P.; Touboul, D.; Litaudon, M.; Paolini, J. Isolation of Premyrsinane, Myrsinane, and Tigliane Diterpenoids from Euphorbia pithyusa Using a Chikungunya Virus Cell-Based Assay and Analogue Annotation by Molecular Networking. J. Nat. Prod. 2017, 80, 2051–2059. [Google Scholar] [CrossRef] [PubMed]
- Nothias, L.F.; Nothias-Esposito, M.; Da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. J. Nat. Prod. 2018, 81, 758–767. [Google Scholar] [CrossRef] [Green Version]
- Nothias-Esposito, M.; Nothias, L.F.; Da Silva, R.R.; Retailleau, P.; Zhang, Z.; Leyssen, P.; Roussi, F.; Touboul, D.; Paolini, J.; Dorrestein, P.C.; et al. Investigation of Premyrsinane and Myrsinane Esters in Euphorbia cupanii and Euphobia pithyusa with MS2LDA and Combinatorial Molecular Network Annotation Propagation. J. Nat. Prod. 2019. [Google Scholar] [CrossRef]
- Remy, S.; Olivon, F.; Desrat, S.; Blanchard, F.; Eparvier, V.; Leyssen, P.; Neyts, J.; Roussi, F.; Touboul, D.; Litaudon, M. Structurally Diverse Diterpenoids from Sandwithia guyanensis. J. Nat. Prod. 2018, 81, 901–912. [Google Scholar] [CrossRef]
- Schmidt, R.; Hecker, E. Autoxidation of Phorbol Esters under Normal Storage Conditions. Cancer Res. 1975, 35, 1375–1377. [Google Scholar]
- Warrilow, D.; Gardner, J.; Darnell, G.A.; Suhrbier, A.; Harrich, D. HIV Type 1 Inhibition by Protein Kinase C Modulatory Compounds. Aids Res. Hum. Retrovir. 2006, 22, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Márquez, N.; Calzado, M.A.; Sánchez-Duffhues, G.; Pérez, M.; Minassi, A.; Pagani, A.; Appendino, G.; Diaz, L.; Muñoz-Fernández, M.Á.; Muñoz, E. Differential effects of phorbol-13-monoesters on human immunodeficiency virus reactivation. Biochem. Pharm. 2008, 75, 1370–1380. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Cik, M.; Appendino, G.; Puyvelde, L.; Leysen, J.; Kimpe, N. Daphnane-Type Diterpene Orthoesters and their Biological Activities. Mini-Rev. Med. Chem. 2005, 2, 185–200. [Google Scholar] [CrossRef]
- Olivon, F.; Remy, S.; Grelier, G.; Apel, C.; Eydoux, C.; Guillemot, J.C.; Neyts, J.; Delang, L.; Touboul, D.; Roussi, F.; et al. Antiviral compounds from Codiaeum peltatum targeted by a multi-informative molecular networks approach. J. Nat. Prod. 2019, 82, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Allard, P.M.; Martin, M.T.; Tran Huu Dau, M.E.; Leyssen, P.; Guéritte, F.; Litaudon, M. Trigocherrin a, the first natural chlorinated daphnane diterpene orthoester from Trigonostemon cherrieri. Org. Lett. 2012, 14, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Litaudon, M.; Nothias, L.; Allard, P.; Bourjot, M.; Dumontet, V.; Guéritte, F.; Delang, L.; Pannecouque, C.; Leyssen, P. Diterpenoids from Euphorbiaceae with Potent Anti-CHIKV and Anti-HIV Activities: Are these Antiviral Properties Correlated? Planta Med. 2013, 79, 866–867. [Google Scholar] [CrossRef]
- Nothias-Scaglia, L.F.; Retailleau, P.; Paolini, J.; Pannecouque, C.; Neyts, J.; Dumontet, V.; Roussi, F.; Leyssen, P.; Costa, J.; Litaudon, M. Jatrophane diterpenes as inhibitors of chikungunya virus replication: Structure-activity relationship and discovery of a potent lead. J. Nat. Prod. 2014, 77, 1505–1512. [Google Scholar] [CrossRef]
- Esposito, M.; Nothias, L.F.; Nedev, H.; Gallard, J.F.; Leyssen, P.; Retailleau, P.; Costa, J.; Roussi, F.; Iorga, B.I.; Paolini, J.; et al. Latex as a Source of Jatrophane Esters: Isolation, Structural Analysis, Conformational Study, and Anti-CHIKV Activity. J. Nat. Prod. 2016, 79, 2873–2882. [Google Scholar] [CrossRef]
- Wittenberg, R.; Beier, C.; Dräger, G.; Jas, G.; Jasper, C.; Monenschein, H.; Kirschning, A. Towards the total synthesis of tonantzitlolone - Preparation of key fragments and the complete carbon backbone. Tetrahedron Lett. 2004, 45, 4457–4460. [Google Scholar] [CrossRef]
- Dräger, G.; Jeske, F.; Kunst, E.; Lopez, E.G.; Sanchez, H.V.; Tsichritzis, F.; Kirschning, A.; Jakupovic, J. Tonantzitlolone and other diterpenes from Stillingia sanguinolenta. Eur. J. Org. Chem. 2007, 5020–5026. [Google Scholar] [CrossRef]
- Abdelnabi, R.; Amrun, S.N.; Ng, L.F.P.; Leyssen, P.; Neyts, J.; Delang, L. Protein kinases C as potential host targets for the inhibition of chikungunya virus replication. Antivir. Res. 2017, 139, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Breitkreutz, D.; Braiman-Wiksman, L.; Daum, N.; Denning, M.F.; Tennenbaum, T. Protein kinase C family: On the crossroads of cell signaling in skin and tumor epithelium. J. Cancer Res. Clin. Oncol. 2007, 133, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Corbalán-García, S.; Gómez-Fernández, J.C. Protein kinase C regulatory domains: The art of decoding many different signals in membranes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2006, 1761, 633–654. [Google Scholar] [CrossRef] [PubMed]
- McKernan, L.N.; Momjian, D.; Kulkosky, J. Protein Kinase C: One Pathway towards the Eradication of Latent HIV-1 Reservoirs. Adv. Virol. 2012, 2012, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matias, D.; Bessa, C.; Fátima Simões, M.; Reis, C.P.; Saraiva, L.; Rijo, P. Natural Products as Lead Protein Kinase C Modulators for Cancer Therapy. In Studies in Natural Products Chemistry; Atta-ur-Rahman, F.R.S., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 2016; Volume 50, pp. 45–79. [Google Scholar]
- Xu, R.X.; Pawelczyk, T.; Xia, T.H.; Brown, S.C. NMR structure of a protein kinase C-γ phorbol-binding domain and study of protein-lipid micelle interactions. Biochemistry 1997, 36, 10709–10717. [Google Scholar] [CrossRef]
- Kraft, A.S.; Anderson, W.B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature 1983, 301, 621–623. [Google Scholar] [CrossRef]
- Wender, P.A.; Koehler, K.F.; Sharkey, N.A.; Dell’Aquila, M.L.; Blumberg, P.M. Analysis of the phorbol ester pharmacophore on protein kinase C as a guide to the rational design of new classes of analogs. Proc. Natl. Acad. Sci. USA 1986, 83, 4214–4218. [Google Scholar] [CrossRef]
- Silinsky, E.M.; Searl, T.J. Phorbol esters and neurotransmitter release: More than just protein kinase C? Br. J. Pharm. 2003, 138, 1191–1201. [Google Scholar] [CrossRef]
- Jeffrey, A.M.; Liskamp, R.M. Computer-assisted molecular modeling of tumor promoters: Rationale for the activity of phorbol esters, teleocidin B, and aplysiatoxin. Proc. Natl. Acad. Sci. USA 1986, 83, 241–245. [Google Scholar] [CrossRef]
- López-Huertas, M.R.; Mateos, E.; Díaz-Gil, G.; Gómez-Esquer, F.; Del Cojo, M.S.; Alcamí, J.; Coiras, M. Protein kinase Cθ is a specific target for inhibition of the HIV type 1 replication in CD4 + T lymphocytes. J. Biol. Chem. 2011, 286, 27363–27377. [Google Scholar] [CrossRef]
- Trushin, S.A.; Bren, G.D.; Asin, S.; Pennington, K.N.; Paya, C.V.; Badley, A.D. Human Immunodeficiency Virus Reactivation by Phorbol Esters or T-Cell Receptor Ligation Requires both PKC and PKC. J. Virol. 2005, 79, 9821–9830. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Koyanagi, Y.; Nakashima, H.; Kobayashi, N.; Yamamoto, N. Tumor promoter, TPA, enhances replication of HTLV-III/LAV. Virology 1986, 154, 249–258. [Google Scholar] [CrossRef]
- Jiang, G.; Dandekar, S. Targeting NF-κB Signaling with Protein Kinase C Agonists as An Emerging Strategy for Combating HIV Latency. Aids Res. Hum. Retrovir. 2014, 31, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Thorlund, K.; Horwitz, M.S.; Fife, B.T.; Lester, R.; Cameron, D.W. Landscape review of current HIV “kick and kill” cure research-some kicking, not enough killing. Bmc Infect. Dis. 2017, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Kazanietz, M.G.; Blumberg, P.M.; Hurley, J.H. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell 1995, 81, 917–924. [Google Scholar] [CrossRef]
- Newton, A.C.; Brognard, J. Reversing the Paradigm: Protein Kinase C as a Tumor Suppressor. Trends Pharm. Sci. 2017, 38, 438–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraiva, L.; Fresco, P.; Pinto, E.; Portugal, H.; Gonçalves, J. Differential Activation by Daphnetoxin and Mezerein of PKC-Isotypes α, βI, δ and ζ. Planta Med. 2001, 67, 787–790. [Google Scholar] [CrossRef]
- Hou, J.J.; She, Y.; Yang, Z.; Fang, L.; Cai, L.Y.; Yao, S.; Long, H.L.; Wu, W.Y.; Guo, D.A. Anti-proliferation activity of terpenoids isolated from Euphorbia kansui in human cancer cells and their structure-activity relationship. Chin. J. Nat. Med. 2017, 15, 766–774. [Google Scholar] [CrossRef]
- Rosen, R.H.; Gupta, A.K.; Tyring, S.K. Dual mechanism of action of ingenol mebutate gel for topical treatment of actinic keratoses: Rapid lesion necrosis followed by lesion-specific immune response. J. Am. Acad. Derm. 2012, 66, 486–493. [Google Scholar] [CrossRef]
- Miller, J.; Campbell, J.; Blum, A.; Reddell, P.; Gordon, V.; Schmidt, P.; Lowden, S. Dose Characterization of the Investigational Anticancer Drug Tigilanol Tiglate (EBC-46) in the Local Treatment of Canine Mast Cell Tumors. Front. Vet. Sci. 2019, 6, 1–10. [Google Scholar] [CrossRef]
- QBiotics. Available online: https://qbiotics.com (accessed on 27 May 2019).
Compound | CHIKV EC50 | SI | R1 | R2 | R3 | |
---|---|---|---|---|---|---|
Phorbol esters | ||||||
1 | Phorbol | >343 | >1 | HO- | HO- | HO- |
2 | Phorbol-12-acetate | >245 | 0.8 | AcO- | HO- | HO- |
3 | Phorbol-12-decanoate | 4.9 ± 1.7 | 1.5 | DecO- | HO- | HO- |
4 | Phorbol-13-acetate | >174 | n.d. | HO- | AcO- | HO- |
5 | Phorbol-13-butyrate | 20 ± 10 | 12.3 | HO- | BuO- | HO- |
6 | Phorbol-13-decanoate | 2.2 ± 0.1 | 9.7 | HO- | DecO- | HO- |
7 | Phorbol-13-tetradecanoate | 0.99 ± 0.03 | 9.0 | HO- | TetradecO- | HO- |
8 | Phorbol-12,13-diacetate | 9.4 ± 1.0 | 4.2 | AcO- | AcO- | HO- |
9 | Phorbol-12,13-dibutyrate | 1.8 ± 0.2 | 2.1 | BuO- | BuO- | HO- |
10 | Phorbol-12,13-dihexanoate | 3.2 ± 0.2 | 1.8 | HexO- | HexO- | HO- |
11 | Phorbol-12,13-didecanoate | 6.0 ± 0.9 nM | 686 | DecO- | DecO- | HO- |
12 | 4α-Phorbol-12,13-didecanoate | 1.5 ± 0.1 | 2.2 | DecO- | DecO- | HO- |
13 | Phorbol-13,20-diacetate | 24.6 ± 7.1 | 1.7 | HO- | AcO- | AcO- |
14 | Phorbol-12,13,20-triacetate | 32.6 ± 4.0 | 2.2 | AcO- | AcO- | AcO- |
15 | 12-O-Tetradecanoylphorbol-13-acetate (TPA) | 2.9 ± 0.3 nM | 1965 | TetradecO- | AcO- | HO- |
16 | 12-O-Tetradecanoyl-4α-phorbol-13-acetate | 2.8 ± 0.5 | 1.9 | TetradecO- | AcO- | HO- |
17 | 12-O-Tiglylphorbol-13-decanoate | 1.1 ± 0.3 | 3.3 | TiglO- | DecO- | HO- |
18 | 12-O-(N-methylanthranilate)-phorbol-13-acetate | 15 ± 4 | 1.1 | MA- | AcO- | HO- |
19 | 12,13-O,O′-Dinonanoylphorbol-20-homovanillate | 0.6 ± 0.1 | 3.7 | NonO- | NonO- | HVA- |
20 | 12-O-Phenylacetyl-13-O-acetylphorbol-20-homovanillate | 1.7 ± 0.3 | 14.2 | PhAcO- | AcO- | HVA- |
21 | Trigowiin A | >100 | >2.3 | DodecO- | AcO- | - |
22 | 12-O-Acetylphorbol-13(2″-methyl)-butyrate | 3.3 ± 0.3 | 41 | AcO- | mBuO- | HO- |
23 | 12-O-Decanoylphorbol-13-acetate | 2.4 ± 0.3 | 2.0 | DecO- | AcO- | HO- |
24 | 12-O-Decanoyl-7-hydroperoxy-5-ene-13-acetate phorbol | 4.0 ± 0.8 | 1.9 | - | - | - |
25 | 20-Oxo-phorbol-12,13-dibutyrate | 13.1 ± 0.5 | 2.7 | BuO- | BuO- | O= |
26 | 20-Oxo-TPA | 0.7 ± 0.1 | 5.9 | TetradecO- | AcO- | O= |
27 | 12β-O-[Deca-2E,4Z-dienoyl]-13α-isobutyl-4β-phorbol | <0.7 | >77 | E-DecadiO- | iBuO- | HO- |
28 | 12β-O-[Deca-2E,4Z-dienoyl]-13α-(2-methylbutyl)-4β-phorbol | <0.7 | >12 | E-DecadiO- | mBuO- | HO- |
29 | 12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-4β-phorbol | <0.8 | >58 | DecadiO- | iBuO- | HO- |
30 | 12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-5-ene-7-oxo-4β-phorbol | 4.5 ± 0.6 | 6 | DecadiO- | iBuO- | - |
4-Deoxyphorbol esters | ||||||
31 | 12β-O-Acetyl-4α-deoxyphorbol-13(2″-methyl)-butyrate | 77 | 1.4 | AcO- | mBuO- | - |
32 | 12β-O-[Nona-2Z,4E,6E-trienoyl]-4α-deoxyphorbol-13-butyrate | 1.4 ± 0.2 | 5.1 | NontriO- | BuO- | - |
33 | 4β-Deoxyphorbol-12-tiglate-13-isobutyrate | 1.0 ± 0.4 | 25 | TiglO- | iBuO- | - |
34 | 4α-Deoxyphorbol-12-tiglate-13-isobutyrate | 17.0 ± 1.0 | 7 | TiglO- | iBuO- | - |
35 | 4β-Deoxyphorbol-12-acetate-13-isobutyrate | 0.44 ± 0.03 | 390 | AcO- | iBuO- | - |
36 | 12β-O-[Deca-2Z,4E-dienoyl]-13α-isobutyryl-4β-deoxyphorbol | 0.9 ± 0.1 | 6 | DecadiO- | iBuO- | - |
37 | 12β-O-[Deca-2Z,4E,6E-trienoyl]-13α-isobutyryl-4β-deoxyphorbol | 0.6 ± 0.6 | 41 | DecatriO- | iBuO- | - |
38 | 12β-O-[Octa-2Z,4E-dienoyl]-13α-isobutyryl-4β-deoxyphorbol | 0.4 ± 0.02 | 34 | OctaDiO- | iBuO- | - |
39 | 12β-O-[Deca-2Z,4E,7Z-trienoyl]-13α-isobutyryl-4β-deoxyphorbol | 12.6 ± 46.2 | 4 | 7-DecatriO- | iBuO- | - |
4,20-Dideoxyphorbol ester | ||||||
40 | 4α,20-Dideoxyphorbol-12-tiglate-13-isobutyrate | 51.1 ± 4.1 | 3 | - | - | - |
12-Deoxyphorbol esters | ||||||
41 | 12-Deoxyphorbol-13-acetate (prostratin) | 2.7 ± 1.2 | 22.8 | H- | AcO- | HO- |
42 | 13-O-Isobutyryl-12-deoxyphorbol-20-acetate | 0.7 ± 0.1 | 5.0 | H- | BuO- | AcO- |
43 | 13-O-Phenylacetyl-12-deoxyphorbol-20-acetate | 50.8 ± 2.1 | 1.9 | H- | PhAcO- | AcO- |
44 | 12-Deoxyphorbol-13(2″-methyl)butyrate | 1.2 ± 0.2 | >240 | H- | mBuO- | HO- |
45 | 12-Deoxyphorbol-13-[8′-oxo- hexadeca-2E,4E,6E-trienoate] | 2.2 ± 1.5 | 5.9 | H- | OxoHDTO- | HO- |
46 | 12-Deoxyphorbol-13-hexadecanoate | 0.02 ± 0.001 | 1500 | H- | HexadecO- | HO- |
47 | 12-Deoxy-5β-hydroxy-phorbol-13-hexadecanoate | 0.13 ± 0.03 | 98 | H- | HexadecO- | HO- |
48 | 12-Deoxy-6,7-epoxy-5β-hydroxy-phorbol-13-hexadecanoate | 0.09 ± 0.05 | 54 | - | - | - |
49 | 12-Deoxy-5β,6β,7α-trihydroxy-phorbol-13-hexadecanoate | 2.14 ± 0.3 | 26 | - | - | - |
4,12-Dideoxyphorbol esters | ||||||
50 | 4α-12-Dideoxyphorbol-13(2,3-dimethyl)butyrate-20-acetate | >11 | n.d | - | dBuO- | OAc- |
51 | 4β-12-Dideoxyphorbol-13(2,3-dimethyl)butyrate-20-acetate | 4.0 ± 0.3 | 10.6 | - | dBuO- | OAc- |
Ingenanes | ||||||
52 | Ingenol | 30.1 ± 19.2 | 4.8 | HO- | HO- | - |
53 | Ingenol-3-mebutate | 22.9 ± 5.2 | 2.3 | MbO- | HO- | - |
54 | Ingenol-3,20-dibenzoate | 1.2 ± 0.1 | 6.4 | BzO- | BzO- | - |
Chloroquine | 10 ± 5 | 8.9 | - | - | - |
Compound | CHIKV EC50 | SI | |
---|---|---|---|
Daphnanes | |||
55 | Resiniferatoxin | 1.8 ± 0.2 | 2.3 |
56 | Trigocherrierin A | 0.6 ± 0.1 | 71.7 |
57 | Trigocherrin A | 1.5 ± 0.6 | 23 |
58 | Trigocherrin B | 2.6 ± 0.7 | 36 |
59 | Trigocherrin F | 3.0 ± 1.2 | 7.7 |
60 | Trigocherriolide A | 1.9 ± 0.6 | 2.4 |
61 | Trigocherriolide B | 2.5 ± 0.3 | 2.1 |
62 | Trigocherriolide C | 3.9 ± 1.0 | 2.7 |
63 | Trigocherriolide E | 0.7 ± 0.1 | 9.4 |
64 | Neoguillauminin A | 17.7 ± 0.8 | 2 |
65 | Codiapeltine A | 10.0 ± 2.3 | 5 |
66 | Codiapeltine B | 4.4 ± 0.5 | 11 |
Chloroquine | 10 ± 5 | 8.9 |
Compound Name | CHIKV EC50 | SI | R1 | R2 | R3 | R4 | R5 | |
---|---|---|---|---|---|---|---|---|
9,14-Dioxojatropha-dienes | ||||||||
67 | 3,5,7,8,15-Pentaacetoxy-2-hydroxy-9,14-dioxojatropha-6(17),11E-diene | >164 | n.d. | AcO- | H | - | - | - |
68 | 3,5,7,15-Tetraacetoxy-2-hydroxy-8-isobutyryloxy-9,14-dioxojatropha-6(17),11E-diene | >196 | n.d. | iBuO- | H | - | - | - |
69 | 3,5,7,15-Tetraacetoxy-2-hydroxy-8-tigloyloxy-9,14-dioxojatropha-6(17),11E-diene | 0.76 ± 0.14 | 208 | TiglO- | H | - | - | - |
70 | 3,5,7,15-Tetraacetoxy-8-benzoyloxy-2-hydroxy-9,14-dioxojatropha-6(17),11E-diene | 4.3 ± 0.2 | 29 | BzO- | H | - | - | - |
71 | esulatin B | 60 ± 14 | >2.6 | AcO- | AcO- | - | - | - |
72 | 2,3,5,7,15- Pentaacetoxy-8-tigloyloxy-9,14-dioxojatropha-6(17),-11E-diene | 17.4 ± 0.7 | 8.3 | TiglO- | AcO- | - | - | - |
73 | 2,3,5,8,15- Pentaacetoxy-7-benzoyloxy-9,14-dioxojatropha-6(17),11E-diene | 17.1 | >2.9 | BzO- | AcO- | - | - | - |
9-Oxojatropha-dienes | ||||||||
74 | 5,7,14- Triacetoxy-3-benzoyloxy-8,15-dihydroxy-9-oxojat-opha-6(17),11E-diene | 19.5 ± 3.6 | 7.8 | AcO- | H | - | - | - |
75 | 5,7-Diacetoxy-3-benzoyloxy-14,15-dihydroxy-8-isobutyryloxy-9-oxojatropha-6(17),11E-diene | 21.0 ± 3.4 | 2.8 | iBuO- | H | - | - | - |
76 | 5,7-Diacetoxy-3-benzoyloxy-14,15-dihydroxy-8-(2-methylbutyryloxy)-9-oxojatropha-6(17),11E-diene | 111 ± 14 | >1.7 | mBuO- | H | - | - | - |
77 | 5,7,14-Tri- acetoxy-3-benzoyloxy-15-hydroxy-9-oxojatropha-6(17),11E-diene | 80 ± 6 | 1.9 | H | AcO- | - | - | - |
14-Oxojatropha-dienes | ||||||||
78 | Euphodendroidin E | >29.2 | n.d | H | AcO- | iBuO- | BzO- | AcO- |
79 | Euphodendroidin F | 57.3 | 1.9 | HO- | AcO- | iBuO- | BzO- | AcO- |
80 | Euphodendroidin J | >144.4 | n.d. | HO- | BzO- | HO- | BzO- | AcO- |
81 | Euphodendroidin A | >28.6 | n.d. | AcO- | H | iBuO- | BzO- | AcO- |
82 | Euphodendroidin K | >124.4 | <1.0 | AcO- | iBuO- | iBuO- | BzO- | AcO- |
83 | Euphodendroidin L | >44.9 | n.d. | AcO- | AcO- | iBuO- | BzO- | AcO- |
84 | Euphodendroidin M | >42.8 | n.d. | AcO- | AcO- | iBuO- | iBuO- | AcO- |
85 | Euphodendroidin B | 133.6 | 0.5 | AcO- | H | mBuO- | BzO- | AcO- |
86 | Euphodendroidin N | >42.5 | 1.1 | AcO- | H | BzO- | BzO- | AcO- |
87 | Euphodendroidin O | 27.4 | 1.3 | AcO- | H | BzO- | BzO- | H |
88 | 2,3,5,7,8,9,15-Heptahydroxyjatropha-6(17),11-diene-14-one 2,5,8, 9-tetraacetate-3-(benzoyloxyacetate)-7-(2-methyl-propionate) | 5.5 ± 1.7 | 3.2 | AcO- | BzOAcO- | AcO- | iBuO- | AcO- |
Terracinolides | ||||||||
89 | 13α-Terracinolide G | >132.6 | n.d. | AcO- | AcO- | HO- | H | - |
90 | 13α-Terracinolide B | >125.6 | n.d. | AcO- | AcO- | HO- | AcO- | - |
91 | Terracinolide C | 15.0 ± 3.8 | 2.4 | AcO- | iBuO- | H | H | - |
92 | Terracinolide J | >135.4 | n.d. | H | AcO- | H | AcO- | - |
Chloroquine | 10 ± 5 | 8.9 | - | - | - | - | - |
Compound | CHIKV EC50 | SI | R1 | R2 | R3 | R4 | R5 | |
---|---|---|---|---|---|---|---|---|
Premyrsinol esters | ||||||||
93 | 3β,7β,13β,17-O-Tetraacetyl-5α-O-benzoyl-14-oxopremyrsinol | 78 | 2.2 | AcO- | BzO- | AcO- | AcO- | H |
94 | 3β,7β,15β,17-O-Tetraacetyl-5α-O-benzoyl-14-oxopremyrsinol | >152 | n.d. | AcO- | BzO- | AcO- | H | AcO- |
95 | 3β,7β,13β,17-O-Tetraacetyl-5α-O-(2-methylbutyryl)-14-oxopre- myrsinol | >50 | <5 | AcO- | mBuO- | AcO- | AcO- | H |
96 | 7β,13β,17-O-Triacetyl-5α-O-(2-methylbutyryl)-3β-O-propanoyl- 14-oxopremyrsinol | 107 | 2.2 | PrO- | mBuO- | AcO- | AcO- | H |
97 | 7β,17-O-Diacetyl-5α-O-benzoyl-13β-nicotinyl-3β-O-propanoyl- 14-oxopremyrsinol | >107 | <2.4 | PrO- | BzO- | AcO- | NicO- | H |
98 | 13β,17-O-Diacetyl-5α-O-benzoyl-7β-hydroxy-3β-O-propanoyl- 14-oxopremyrsinol | 11 ± 1.4 | 5.8 | PrO- | BzO- | H | H | AcO- |
99 | Premyrsinol-3-propanoate-5-benzoate-7,13,17-triacetate | >144 | n.d. | PrO- | BzO- | AcO- | AcO- | H |
Myrsinol ester | ||||||||
100 | 5α,7β-O-Diacetyl-14β-O-benzoyl-3β-O-propanoylmyrsinol | 84 | 1.9 | - | - | - | - | - |
Chloroquine | 10 ± 5 | 8.9 | - | - | - | - | - |
Compound | CHIKV EC50 | SI | |
---|---|---|---|
Flexibilanes | |||
101 | tonantzitlolone A | >215 | n.d. |
102 | tonantzitlolone B | 12 ± 3 | 10.2 |
103 | tonantzitlolone C | 24 ± 1 | >9 |
104 | tonantzitlolone D | >222 | n.d. |
105 | tonantzitlolone E | >107 | n.d. |
106 | tonantzitlolone F | 19 ± 2 | 3 |
107 | tonantzitlolone G | 168 | >1.3 |
108 | tonantzitlolone H | >191 | n.d. |
109 | tonantzitlolone I | >208 | n.d. |
110 | tonantzitloic acid | >201 | n.d. |
chloroquine | 10 ± 5 | 8.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remy, S.; Litaudon, M. Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. Molecules 2019, 24, 2336. https://doi.org/10.3390/molecules24122336
Remy S, Litaudon M. Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. Molecules. 2019; 24(12):2336. https://doi.org/10.3390/molecules24122336
Chicago/Turabian StyleRemy, Simon, and Marc Litaudon. 2019. "Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication" Molecules 24, no. 12: 2336. https://doi.org/10.3390/molecules24122336
APA StyleRemy, S., & Litaudon, M. (2019). Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. Molecules, 24(12), 2336. https://doi.org/10.3390/molecules24122336