Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Electronic Absorption Properties of ICAN Isomers
2.2. Steady-State Fluorescence Emission Properties of ICAN Isomers
2.3. Time-Resolved Fluorescence Measurements
3. Materials and Methods
3.1. Materials
3.2. Instrumental Methods
3.3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Weber, G.; Farris, F.J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 1979, 18, 3075–3078. [Google Scholar] [CrossRef] [PubMed]
- Parasassi, T.; Conti, F.; Gratton, E. Time-resolved fluorescence emission spectra of Laurdan in phospholipid vesicles by multifrequency phase and modulation fluorometry. Cell Mol. Biol. 1986, 32, 103–138. [Google Scholar] [PubMed]
- Parasassi, T.; Krasnowska, E.K.; Bagatolli, L.; Gratton, E. Laurdan and Prodan as Polarity-Sensitive Fluorescent Membrane Probes. J. Fluoresc. 1998, 8, 365–373. [Google Scholar] [CrossRef]
- Nabavi Zadeh, P.S.; Zezzi do Valle Gomes, M.; Abrahamsson, M.; Palmqvist, A.E.C.; Åkerman, B. Measuring viscosity inside mesoporous silica using protein-bound molecular rotor probe. PCCP 2018, 20, 23202–23213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasu, A.K.; Kanvah, S. Red-emitting cationic fluorophore as a probe for anionic surfactants. Dyes Pigm. 2017, 142, 230–236. [Google Scholar] [CrossRef]
- Mika, J.T.; Thompson, A.J.; Dent, M.R.; Brooks, N.J.; Michiels, J.; Hofkens, J. Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors. Biophys. J. 2016, 111, 1528–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, D.; Teoh, C.L.; Gao, N.; Xu, Q.-H.; Chang, Y.-T. A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells. Sensors 2016, 16, 1397. [Google Scholar] [CrossRef]
- Loving, G.S.; Sainlos, M.; Imperiali, B. Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends Biotechnol. 2010, 28, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, J.; Nakajima, T.; Sato, M.; Ozawa, T.; Tohda, K.; Umezawa, Y. Imaging of Conformational Changes of Proteins with a New Environment-Sensitive Fluorescent Probe Designed for Site-Specific Labeling of Recombinant Proteins in Live Cells. Anal. Chem. 2001, 73, 2920–2928. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar]
- Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. What is Solvatochromism? J. Phys. Chem. B 2010, 114, 17128–17135. [Google Scholar] [CrossRef]
- Sasaki, S.; Niko, Y.; Klymchenko, A.S.; Konishi, G. Design of donor–acceptor geometry for tuning excited-state polarization: Fluorescence solvatochromism of push–pull biphenyls with various torsional restrictions on their aryl–aryl bonds. Tetrahedron 2014, 70, 7551–7559. [Google Scholar] [CrossRef]
- Klymchenko, A.S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Liu, T.; Liu, H.; Tian, M.-Z.; Li, Y. Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems. Acc. Chem. Res. 2014, 47, 1186–1198. [Google Scholar] [CrossRef] [PubMed]
- Rácz, D.; Nagy, M.; Mándi, A.; Zsuga, M.; Kéki, S. Solvatochromic properties of a new isocyanonaphthalene based fluorophore. J. Photochem. Photobiol. A Chem. 2013, 270, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Nagy, M.; Rácz, D.; Lázár, L.; Purgel, M.; Ditrói, T.; Zsuga, M. Solvatochromic Study of Highly Fluorescent Alkylated Isocyanonaphthalenes, Their π-Stacking, Hydrogen-Bonding Complexation, and Quenching with Pyridine. Chemphyschem 2014, 15, 3614–3625. [Google Scholar] [CrossRef]
- Nagy, M.; Rácz, D.; Nagy, Z.L.; Nagy, T.; Fehér, P.P.; Purgel, M.; Zsuga, M.; Kéki, S. An acrylated isocyanonaphthalene based solvatochromic click reagent: Optical and biolabeling properties and quantum chemical modeling. Dyes Pigm. 2016, 133, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Nagy, M.; Rácz, D.; Nagy, Z.L.; Fehér, P.P.; Kalmár, J.; Fábián, I.; Kiss, A.; Zsuga, M.; Kéki, S. Solvatochromic isocyanonaphthalene dyes as ligands for silver(I) complexes, their applicability in silver(I) detection and background reduction in biolabelling. Sens. Actuators B Chem. 2018, 255, 2555–2567. [Google Scholar] [CrossRef] [Green Version]
- Nagy, M.; Kéki, S.; Rácz, D.; Mathur, J.; Vereb, G.; Garda, T.; M-Hamvas, M.; Chaumont, F.; Boka, K.; Boddi, B.; et al. Novel fluorochromes label tonoplast in living plant cells and reveal changes in vacuolar organization after treatment with protein phosphatase inhibitors. Protoplasma 2018, 255, 829–839. [Google Scholar] [CrossRef]
- Nagy, Z.; Nagy, M.; Kiss, A.; Rácz, D.; Barna, B.; Konczol, P.; Bankó, C.; Bacsó, Z.; Kéki, S.; Bánfalvi, G.; et al. MICAN, a new fluorophore for vital and non-vital staining of human cells. Toxicol. In Vitro 2018, 48, 137–145. [Google Scholar] [CrossRef]
- Nagy, M.; Kovács, S.L.; Nagy, T.; Rácz, D.; Zsuga, M.; Kéki, S. Isocyanonaphthalenes as extremely low molecular weight, selective, ratiometric fluorescent probes for Mercury(II). Talanta 2019, 201, 165–173. [Google Scholar] [CrossRef]
- Nad, S.; Pal, H. Unusual Photophysical Properties of Coumarin-151. J. Phys. Chem. A 2001, 105, 1097–1106. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Lippert, E. Dipolmoment und Elektronenstruktur von angeregten Molekülen. Zeitschrift für Naturforschung 1955, 10, 541–545. [Google Scholar] [CrossRef]
- Mataga, N.; Kaifu, Y.; Koizumi, M. The Solvent Effect on Fluorescence Spectrum, Change of Solute-Solvent Interaction during the Lifetime of Excited Solute Molecule. Bull Chem. Soc. Jpn. 1955, 28, 690–691. [Google Scholar] [CrossRef] [Green Version]
- Strickler, S.J.; Berg, R.A. Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J. Chem. Phys. 1962, 37, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision, E.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of AB initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Schäfer, A.; Huber, C.; Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 1994, 100, 5829–5835. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Caricato, M.; Mennuccia, B.; Tomasi, J. Formation and relaxation of excited states in solution: A new time dependent polarizable continuum model based on time dependent density functional theory. J. Chem. Phys. 2006, 124, 124520. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
1,5-ICAN * | 1,4-ICAN | 2,6-ICAN | ||||
---|---|---|---|---|---|---|
Solvent (εr) | λAbs (nm) | ε (M−1cm−1) | λAbs (nm) | ε (M−1cm−1) | λAbs (nm) | ε (M−1cm−1) |
n-Hexane (1.89) | 338 | 6730 | 335 | 9040 | 352 | 2590 |
Toluene (2.38) | 341 | 6460 | 339 | 8070 | 353 | 3120 |
DCM (8.93) | 340 | 6030 | 334 | 10200 | 348 | 3370 |
2-propanol (17.9) | 343 | 7820 | 341 | 11630 | 356 | 3620 |
THF (7.58) | 344 | 5940 | 345 | 10000 | 359 | 4120 |
EtOAc (6.02) | 342 | 7450 | 341 | 9640 | 354 | 3790 |
Dioxane (2.25) | 343 | 5200 | 342 | 9390 | 356 | 3430 |
Acetone (20.7) | 345 | 6100 | 341 | 12800 | 358 | 3430 |
Methanol (32.7) | 342 | 3940 | 341 | 9410 | 353 | 4040 |
Pyridine (12.4) | 347 | 5700 | 353 | 10890 | 362 | 4320 |
Acetonitrile (37.5) | 342 | 8140 | 340 | 11980 | 355 | 3410 |
DMF (36.7) | 346 | 7220 | 354 | 11430 | 362 | 3630 |
DMSO (46.7) | 347 | 6170 | 359 | 13270 | 364 | 4460 |
Water (80.1) | 336 | 8400 | 333 | 9330 | 340 | 2270 |
1,5-ICAN * | 1,4-ICAN | 2,6-ICAN | ||||
---|---|---|---|---|---|---|
Solvent (εr) | λEm (nm) | Φf | λEm (nm) | Φf | λEm (nm) | Φf |
n-Hexane (1.89) | 409 | 0.55 | 402 | 0.48 | 395 | 0.15 |
Toluene (2.38) | 433 | 0.66 | 406 | 0.72 | 398 | 0.25 |
DCM (8.93) | 461 | 0.88 | 411 | 0.74 | 398 | 0.29 |
2-propanol (17.9) | 494 | 0.40 | 419 | 0.54 | 414 | 0.37 |
THF (7.58) | 465 | 0.66 | 413 | 0.52 | 409 | 0.31 |
EtOAc (6.02) | 464 | 0.45 | 411 | 0.64 | 406 | 0.24 |
Dioxane (2.25) | 458 | 0.95 | 412 | 0.86 | 406 | 0.38 |
Acetone (20.7) | 479 | 0.50 | 411 | 0.41 | 411 | 0.30 |
Methanol (32.7) | 494 | 0.54 | 419 | 0.59 | 413 | 0.24 |
Pyridine (12.4) | 490 | 0.28 | 423 | 0.05 | 420 | 0.09 |
Acetonitrile (37.5) | 483 | 0.38 | 416 | 0.45 | 408 | 0.31 |
DMF (36.7) | 491 | 0.48 | 422 | 0.69 | 419 | 0.53 |
DMSO (46.7) | 497 | 0.74 | 425 | 0.70 | 420 | 0.51 |
Water (80.1) | 513 | 0.04 | 434 | 0.63 | 419 | 0.21 |
ao (pm) | (µE − µG)DFT (D) | (µE − µG)LM (D) | |
---|---|---|---|
1,5-ICAN | 305 | 4.8 | 4.9 |
1,4-ICAN | 278 | 0.7 | 2.2 |
2,6-ICAN | 388 | 3.5 | 3.6 |
1,5-ICAN * | 1,4-ICAN | 2,6-ICAN | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Solvent | kF × 10−8 (s−1) | kr × 10−8 (s−1) | knr × 10−8 (s−1) | kSB × 10−8 (s−1) | kF × 10−8 (s−1) | kr × 10−8 (s−1) | knr × 10−8 (s−1) | kSB × 10−8 (s−1) | kF × 10−8 (s−1) | kr× 10−8 (s−1) | knr × 10−8 (s−1) | kSB × 10−8 (s−1) |
n-Hexane | 1.50 | 0.84 | 0.66 | 0.81 | 1.95 | 0.95 | 1.0 | 1.2 | 1.89 | 0.29 | 1.6 | 0.26 |
THF | 0.93 | 0.62 | 0.31 | 0.74 | 1.42 | 0.74 | 0.68 | 1.1 | 0.91 | 0.28 | 0.63 | 0.29 |
MeOH | 0.97 | 0.52 | 0.45 | 0.47 | 1.25 | 0.74 | 0.51 | 1.2 | 1.29 | 0.31 | 0.98 | 0.26 |
Acetonitrile | 1.20 | 0.44 | 0.76 | 0.60 | 1.27 | 0.57 | 0.70 | 1.2 | 1.28 | 0.40 | 0.88 | 0.33 |
DMSO | 0.62 | 0.46 | 0.16 | 0.71 | 0.71 | 0.50 | 0.21 | 1.7 | 0.71 | 0.36 | 0.35 | 0.37 |
Water | - | - | - | - | 1.73 | 1.2 | 0.53 | 1.0 | 1.66 | 0.36 | 1.3 | 0.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, S.L.; Nagy, M.; Fehér, P.P.; Zsuga, M.; Kéki, S. Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores. Molecules 2019, 24, 2434. https://doi.org/10.3390/molecules24132434
Kovács SL, Nagy M, Fehér PP, Zsuga M, Kéki S. Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores. Molecules. 2019; 24(13):2434. https://doi.org/10.3390/molecules24132434
Chicago/Turabian StyleKovács, Sándor Lajos, Miklós Nagy, Péter Pál Fehér, Miklós Zsuga, and Sándor Kéki. 2019. "Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores" Molecules 24, no. 13: 2434. https://doi.org/10.3390/molecules24132434
APA StyleKovács, S. L., Nagy, M., Fehér, P. P., Zsuga, M., & Kéki, S. (2019). Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores. Molecules, 24(13), 2434. https://doi.org/10.3390/molecules24132434