Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts
Abstract
:1. Introduction
2. Results
2.1. HPLC-DAD Validation Parameters
2.2. Composition of Phenolic Compounds and Chemical Profile of EEPs
2.3. EEPs Antioxidative Properties
2.4. Antibacterial Activity of EEPs
2.5. Antifungal Activity of EEPs
3. Discussion
4. Materials and Methods
4.1. Propolis Samples
4.2. Propolis Extraction Method
4.3. Analysis of Ethanol Extracts of Propolis (EEP)
4.3.1. Determination of Total Phenolic Content
4.3.2. Determination of Total Flavonoid Content (TFC)
4.3.3. Determination of Antioxidative Capacity Using Synthetic DDPH Radical
4.3.4. Determination of Antioxidative Capacity in the Reaction of ABTS Radical Scavenging
4.4. High Performance Liquid Chromatography–Diode Array Detector (HPLC-DAD) Analysis Parameters
4.4.1. Validation
4.4.2. Parameters of Separations
4.5. Test Microorganisms and Preparation of Inoculum
4.6. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal and Fungicidal Concentration (MBC, MFC)
4.7. Percentage Value of Antimicrobial Activity
4.8. Time-Kill Assay
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, 1–165. [Google Scholar]
- Dewey-Mattia, D.; Manikonda, K.; Hall, A.J.; Wise, M.E.; Crowe, S.J. Surveillance for Foodborne Disease Outbreaks—United States, 2009–2015. MMWR. Surveill. Summ. 2018, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.R.; Moss, M.O. Food Microbiology, 2nd ed.; Royal Society of Chemistry: Cambridge, UK, 2000; pp. 101–109. [Google Scholar]
- Hugo, C.J.; Hugo, A. Current trends in natural preservatives for fresh sausage products. Trends Food Sci. Technol. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Rojas-Graü, M.A.; González, L.A.; Varela, P.; Soliva-Fortuny, R.; Hernando, M.I.H.; Munuera, I.P.; Fiszman, S.; Martín-Belloso, O. Recent approaches using chemical treatments to preserve quality of fresh-cut fruit: A review. Postharvest Biol. Technol. 2010, 57, 139–148. [Google Scholar] [CrossRef]
- Bomhard, E.M.; Brendler-Schwaab, S.Y.; Freyberger, A.; Herbold, B.A.; Leser, K.H.; Richter, M. O-phenylphenol and its sodium and potassium salts: A toxicological assessment. Crit. Rev. Toxicol. 2002, 32, 551–626. [Google Scholar] [CrossRef] [PubMed]
- Gunnison, A.F.; Jacobsen, D.W. Sulfite hypersensitivity. A critical review. CRC Crit. Rev. Toxicol. 1987, 17, 185–214. [Google Scholar] [CrossRef] [PubMed]
- Patrignani, F.; Siroli, L.; Serrazanetti, D.I.; Gardini, F.; Lanciotti, R. Innovative strategies based on the use of essential oils and their components to improve safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci. Technol. 2015, 46, 311–319. [Google Scholar] [CrossRef]
- Gniewosz, M.; Stobnicka, A. Bioactive components content, antimicrobial activity, and foodborne pathogen control in minced pork by cranberry pomace extracts. J. Food Saf. 2018, 38, e12398. [Google Scholar] [CrossRef]
- Stobnicka, A.; Gniewosz, M. Antimicrobial protection of minced pork meat with the use of Swamp Cranberry (Vaccinium oxycoccos L.) fruit and pomace extracts. J. Food Sci. Technol. 2018, 55, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Gniewosz, M.; Kraśniewska, K.; Woreta, M.; Kosakowska, O. Antimicrobial activity of a pullulan-caraway essential oil coating on reduction of food microorganisms and quality in fresh baby carrot. J. Food Sci. 2013, 78, M1242–M1248. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.-M.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Pobiega, K.; Gniewosz, M.; Kraśniewska, K. Antimicrobial and antiviral properties of different types of propolis. Zesz. Probl. Postępów Nauk Rol. 2017, 589, 69–79. [Google Scholar] [CrossRef]
- Koc, A.N.; Silici, S.; Mutlu-Sariguzel, F.; Sagdic, O. Antifungal activity of propolis in four different fruit juices. Food Technol. Biotechnol. 2007, 45, 57–61. [Google Scholar]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar] [PubMed]
- Yaghoubi, M.J.; Ghorbani, G.; Soleimanian Zad, S.; Satari, R. Antimicrobial activity of Iranian propolis and its chemical composition. DARU J. Pharm. Sci. 2007, 15, 45–48. [Google Scholar]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.; Hu, F.-L.; Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Swierczek-Zieba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2014, 19, 78–101. [Google Scholar] [CrossRef]
- Pobiega, K.; Kraśniewska, K.; Gniewosz, M. Application of propolis in antimicrobial and antioxidative protection of food quality—A review. Trends Food Sci. Technol. 2019, 83, 53–62. [Google Scholar] [CrossRef]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef]
- Nedji, N.; Loucif-Ayad, W. Antimicrobial activity of Algerian propolis in foodborne pathogens and its quantitative chemical composition. Asian Pac. J. Trop. Dis. 2014, 4, 433–437. [Google Scholar] [CrossRef]
- Kim, Y.H.; Chung, H.J. The effects of Korean propolis against foodborne pathogens and transmission electron microscopic examination. New Biotechnol. 2011, 28, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Temiz, A.; Şener, A.; Tüylü, A.Ö.; Sorkun, K.; Salih, B. Antibacterial activity of bee propolis samples from different geographical regions of Turkey against two foodborne pathogens, Salmonella Enteritidis and Listeria monocytogenes. Turkish J. Biol. 2011, 35, 503–511. [Google Scholar]
- Gucwa, K.; Kusznierewicz, B.; Milewski, S.; Van Dijck, P.; Szweda, P. Antifungal Activity and Synergism with Azoles of Polish Propolis. Pathogens 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Giannopoulou, E.; Skalicka-Woźniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bęben, K.; Antosiewicz, B.; et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef] [PubMed]
- Wolska, K.; Górska, A.; Adamiak, A. Właściwości przeciwbakteryjne propolisu. Postępy Mikrobiol. 2016, 55, 343–350. [Google Scholar]
- Grecka, K.; Kuś, P.M.; Okińczyc, P.; Worobo, R.W.; Walkusz, J.; Szweda, P. The Anti-Staphylococcal Potential of Ethanolic Polish Propolis Extracts. Molecules 2019, 24, 1732. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, M.; Kwaśniewska-Sip, P.; Babicka, M.; Waśkiewicz, A.; Cofta, G.; Kędzia, B.; Ratajczak, I. Skład chemiczny etanolowego ekstraktu z propolisu i jego aktywność biologiczna wobec grzybów pleśniowych. Post Fitoter 2018, 19, 86–91. [Google Scholar]
- Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 10, 1869–1876. [Google Scholar] [CrossRef]
- Maciejewicz, W.; Daniewski, M.; Bal, K.; Markowski, W. GC-MS identification of the flavonoid aglycones isolated from propolis. Chromatographia 2001, 53, 343–346. [Google Scholar] [CrossRef]
- Isidorov, V.A.; Szczepaniak, L.; Bakier, S. Rapid gc/ms determination of botanical precursors of eurasian propolis. Food Chem. 2014, 142, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Okińczyk, P.; Szumny, A.; Szperlik, J.; Kulma, A.; Franiczek, R.; Żbikowska, B.; Krzyżanowska, B.; Sroka, Z. Profile of Polyphenolic and Essential Oil Composition of Polish Propolis, Black Poplar and Aspens Buds. Molecules 2018, 23, 1262. [Google Scholar] [CrossRef] [PubMed]
- Kuś, P.M.; Okińczyc, P.; Jakovljević, M.; Jokić, S.; Jerković, I. Development of supercritical CO2 extraction of bioactive phytochemicals from black poplar (Populus nigra L.) buds followed by GC–MS and UHPLC-DAD-QqTOF-MS. J. Pharm. Biomed. Anal. 2018, 158, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Anđelković, B.; Vujisić, L.; Vučković, I.; Tešević, V.; Vajs, V.; Gođevac, D. Metabolomics study of Populus type propolis. J. Pharm. Biomed. Anal. 2017, 135, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimkić, I.; Ristivojević, P.; Janakiev, T.; Berić, T.; Trifković, J.; Milojković-Opsenica, D.; Stanković, S. Phenolic profiles and antimicrobial activity of various plant resins as potential botanical sources of Serbian propolis. Ind. Crops Prod. 2016, 94, 856–871. [Google Scholar] [CrossRef]
- Rzepecka-Stojko, A.; Kabała-Dzik, A.; Moździerz, A.; Kubina, R.; Wojtyczka, R.; Stojko, R.; Dziedzic, A.; Jastrzębska-Stojko, Ż.; Jurzak, M.; Buszman, E.; et al. Caffeic Acid Phenethyl Ester and Ethanol Extract of Propolis Induce the Complementary Cytotoxic Effect on Triple-Negative Breast Cancer Cell Lines. Molecules 2015, 20, 9242–9262. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.K.; Cordell, G.A.; Martinez, J.L.; Marinoff, M.; Rastrelli, L. Medicinal Plants: Biodiversity and Drugs; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Jiang, X.; Tian, J.; Zheng, Y.; Zhang, Y.; Wu, Y.; Zhang, C.; Zheng, H.; Hu, F.; Jiang, X.; Tian, J.; et al. A New Propolis Type from Changbai Mountains in North-east China: Chemical Composition, Botanical Origin and Biological Activity. Molecules 2019, 24, 1369. [Google Scholar] [CrossRef]
- De Oliveira Dembogurski, D.S.; Silva Trentin, D.; Boaretto, A.G.; Rigo, G.V.; da Silva, R.C.; Tasca, T.; Macedo, A.J.; Carollo, C.A.; Silva, D.B. Brown propolis-metabolomic innovative approach to determine compounds capable of killing Staphylococcus aureus biofilm and Trichomonas vaginalis. Food Res. Int. 2018, 111, 661–673. [Google Scholar] [CrossRef]
- Zhang, C.; Shen, X.; Chen, J.; Jiang, X.; Hu, F. Identification of free radical scavengers from brazilian green propolis using off-line HPLC-DPPH assay and LC-MS. J. Food Sci. 2017, 82, 1602–1607. [Google Scholar] [CrossRef]
- AL-Ani, I.; Zimmermann, S.; Reichling, J.; Wink, M. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics. Medicines 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.-C.; Chen, Y.-W.; Chou, C.-C. Antibacterial activity of propolis against Staphylococcus aureus. Int. J. Food Microbiol. 2005, 102, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.; Baysallar, M.; Besirbellioglu, B.; Salih, B.; Sorkun, K.; Tanyuksel, M. In vitro antimicrobial activity of propolis against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Ann. Microbiol. 2005, 55, 113–117. [Google Scholar]
- Dziedzic, A.; Kubina, R.; Wojtyczka, R.D.; Kabała-Dzik, A.; Tanasiewicz, M.; Morawiec, T. The antibacterial effect of ethanol extract of polish propolis on mutans streptococci and lactobacilli isolated from saliva. Evid.-Based Complement. Altern. Med. 2013. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.F.; Dos Santos, U.P.; da Rocha, P.D.S.; Damião, M.J.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Estevinho, L.M.; de Picoli Souza, K.; Dos Santos, E.L. Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee tetragonisca fiebrigi (Jataí). Evid.-Based. Complement. Alternat. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Boisard, S.; Le Ray, A.M.; Landreau, A.; Kempf, M.; Cassisa, V.; Flurin, C.; Richomme, P. Antifungal and antibacterial metabolites from a French poplar type propolis. Evid.Based Complement. Altern. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.-T.; Zhu, Q.; Zhang, H.-Y. Identifying antibacterial targets of flavonoids by comparative genomics and molecular modeling. Open J. Genom. Res. 2014, 3, 1–8. [Google Scholar] [CrossRef]
- Kujumgiev, A.; Tsvetkova, I.; Serkedjieva, Y.; Bankova, V.; Christov, R.; Popov, S. Antibacterial, antifungal and antiviral activity of propolis of different geographic origin. J. Ethnopharmacol. 1999, 64, 235–240. [Google Scholar] [CrossRef]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT Food Sci. Technol. 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Al-Qurashi, A.D.; Awad, M.A. Postharvest ethanolic extract of propolis treatment affects quality and biochemical changes of ‘Hindi-Besennara’ mangos during shelf life. Sci. Hortic. 2018, 233, 520–525. [Google Scholar] [CrossRef]
- Escriche, I.; Juan-Borrás, M. Standardizing the analysis of phenolic profile in propolis. Food Res. Int. 2018, 106, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Park, Y.K.; Ikegaki, M. Preparation of water and ethanolic extracts of propolis and evaluation of the preparations. Biosci. Biotechnol. Biochem. 1998, 62, 2230–2232. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X.; Yang, H.; Dong, Y.; Du, H.; Shi, H.; et al. Antioxidant compounds from propolis collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef] [PubMed]
- ChromaDex’s Tech Tip 0003: Reference Standard Recovery and Dilution. Available online: http://www.chromadex.com/wp-content/uploads/pdf/techtip0003-recoverydilutionprocedures_nl_pw.pdf (accessed on 17 July 2019).
- Rangasamy, O.; Raoelison, G.; Rakotoniriana, F.E.; Cheuk, K.; Urverg-Ratsimamanga, S.; Quetin-Leclercq, J.; Gurib-Fakim, A.; Subratty, A.H. Screening for anti-infective properties of several medicinal plants of the Mauritians flora. J. Ethnopharmacol. 2007, 109, 331–337. [Google Scholar] [CrossRef]
No. | Compound | Precision Intra-Day (CV %) | Precision Inter-Day (CV %) | Calibration Equation | R2 (n = 6) | Linear Range (mg/mL) | LOD (µg/L) | LOQ (µg/L) |
---|---|---|---|---|---|---|---|---|
1 | Protocatechuic acid | 0.30 | 0.80 | y = 7102.90 x + 43850.00 | 0.9998 | 0.38–380.00 | 6.69 | 22.28 |
2 | (+)-Catechin | 0.34 | 1.21 | y = 8216.40x − 6069.30 | 0.9998 | 0.95–950.00 | 10.90 | 36.40 |
3 | 4-Hydroxybenzoic acid | 0.86 | 1.25 | y = 4563.72 x + 2195.48 | 0.9999 | 1.06–1059.30 | 7.21 | 24.02 |
4 | Caffeic acid | 1.00 | 1.72 | y = 2592.90 x + 379.64 | 0.9996 | 0.998–998.40 | 2.50 | 8.32 |
5 | Vanillic acid | 1.14 | 1.88 | y = 2854.67 x − 1567.35 | 0.9999 | 1.14–1144.60 | 21.04 | 70.14 |
6 | Syringic acid | 0.65 | 0.98 | y = 5762.99 x − 264.13 | 0.9999 | 0.39–392.00 | 6.40 | 21.32 |
7 | p-Coumaric acid | 0.28 | 0.65 | y = 6196.40 x − 537.45 | 0.9999 | 1.01–504.70 | 6.87 | 22.90 |
8 | Ferulic acid | 0.58 | 0.84 | y = 2424.60 x − 1856.88 | 0.9995 | 0.40–399.68 | 10.57 | 35.23 |
9 | Ellagic acid dihydrate | 1.05 | 2.08 | y = 8108.60 x + 3974.20 | 0.9999 | 1.00–999.88 | 6.50 | 20.16 |
10 | Quercetin 3-O-rutinoside | 0.37 | 0.86 | y = 1434.00 x − 5093.00 | 0.9999 | 0.91–90.67 | 7.46 | 24.88 |
11 | Cichoric acid | 0.18 | 0.49 | y = 3230.70 x + 6882.20 | 0.9998 | 0.46–456.96 | 11.47 | 38.23 |
12 | Apiin | 0.88 | 1.27 | y = 2757.84 x − 1062.55 | 0.9999 | 0.69–690.12 | 12.12 | 40.41 |
13 | Dimethyl caffeic acid | 0.70 | 0.91 | y = 2539.82 x + 7831.69 | 0.9997 | 0.84–839.80 | 12.46 | 41.53 |
14 | Cinnamyl alcohol | 0.29 | 0.51 | y = 6326.13 x − 298.76 | 0.9996 | 1.16–116.40 | 6.612 | 22.06 |
15 | Cinnamic acid | 0.68 | 1.01 | y = 6875.85 x − 9588.37 | 0.9996 | 1.15–115.43 | 6.14 | 20.48 |
16 | 4-Methoxycinnamic acid | 0.57 | 0.84 | y = 4155.62 x − 9125.38 | 0.9998 | 1.16–577.60 | 8.77 | 29.24 |
17 | Quercetin | 0.52 | 0.89 | y = 2260.21 x + 744.64 | 0.9999 | 0.41–408.34 | 4.22 | 14.05 |
18 | Pinobanksin | 0.42 | 0.75 | y = 2259.79 x − 898.10 | 0.9999 | 0.19–192.85 | 16.30 | 54.33 |
19 | Apigenin | 0.21 | 0.57 | y = 1994.70 x + 1248.70 | 0.9999 | 0.38–377.88 | 15.58 | 51.93 |
20 | Kaempferol | 0.10 | 0.45 | y = 2064.66 x − 176.08 | 0.9999 | 0.47–469.00 | 19.34 | 64.45 |
21 | Isorhamnetin | 1.28 | 1.85 | y = 4004.00 x − 7104.50 | 0.9997 | 0.398–397.99 | 15.80 | 52.80 |
22 | Chrysin | 0.58 | 0.89 | y = 4160.14 x + 39.94 | 0.9999 | 0.35–351.50 | 8.00 | 26.65 |
23 | Pinocembrin | 0.21 | 0.32 | y = 2632.71 x + 2230.68 | 0.9999 | 0.99–988.00 | 18.30 | 61.00 |
24 | Acacetin | 1.27 | 1.48 | y = 2673.25 x + 4227.20 | 0.9998 | 0.38–383.60 | 10.14 | 33.81 |
25 | Galangin | 0.26 | 0.45 | y = 3097.03 x − 6549.41 | 0.9999 | 0.95–951.52 | 15.73 | 52.42 |
26 | Oroxylin A | 1.16 | 1.55 | y = 929.85 x − 623.61 | 0.9999 | 1.34–1335.34 | 86.60 | 288.67 |
27 | (+/−)-Pinostrobin | 0.28 | 0.38 | y = 2810.87 x + 3430.58 | 0.9998 | 0.52–517.77 | 12.99 | 43.31 |
CAS | Compound | EEP1 | EEP2 | EEP3 | EEP4 | EEP5 | |
---|---|---|---|---|---|---|---|
1 | 99-50-3 | Protocatechuic acid | 14.57 ± 0.02 | 15.00 ± 0.10 | 20.09 ± 0.12 | 15.55 ± 0.10 | 14.14 ± 0.16 |
2 | 154-23-4 | (+)-Catechin | 29.23 ± 0.70 | 6.77 ± 0.02 | 12.32 ± 0.13 | 4.05 ± 0.15 | 5.64 ± 0.08 |
3 | 99-96-7 | 4-Hydroxybenzoic acid | 48.68 ± 0.33 | 164.64 ± 3.28 | 250.14 ± 8.15 | 176.49 ± 7.73 | 173.12 ± 6.00 |
4 | 331-89-5 | Caffeic acid | 1452.74 ± 24.37 | 384.09 ± 4.07 | 453.30 ± 3.48 | 286.95 ± 6.42 | 432.55 ± 2.62 |
5 | 121-34-6 | Vanillic acid | 25.65 ± 0.39 | 67.45 ± 0.55 | 99.21 ± 1.07 | 99.83 ± 0.69 | 68.64 ± 0.93 |
6 | 530-57-4 | Syringic acid | 3.02 ± 0.03 | 3.44 ± 0.02 | 4.95 ± 0.01 | 3.24 ± 0.03 | 3.45 ± 0.09 |
7 | 501-98-4 | p-Coumaric acid | 1269.99 ± 45.35 | 1912.61 ± 19.84 | 2766.97 ± 28.00 | 2550.03 ± 27.06 | 1959.47 ± 28.05 |
8 | 1135-24-6 | Ferulic acid | 610.87 ± 5.53 | 1525.48 ± 26.66 | 2418.23 ± 31.40 | 2067.11 ± 51.45 | 1775.29 ± 21.40 |
9 | 476-66-4 | Ellagic acid dihydrate | 0.00 ± 0.00 | 0.00 ± 0.00 | 4.71 ± 0.10 | 2.03 ± 0.02 | 1.36 ± 0.01 |
10 | 153-18-4 | Quercetin 3-O-rutinoside | 0.00 ± 0.00 | 0.00 ± 0.00 | 81.10 ± 1.50 | 8.38 ± 0.11 | 10.35 ± 0.57 |
11 | 6537-80-0 | Cichoric acid | 23.14 ± 0.56 | 110.71 ± 2.17 | 116.41 ± 1.76 | 172.51 ± 4.02 | 108.48 ± 2.16 |
12 | 26544-34-3 | Apiin | 5.02 ± 0.07 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
13 | 2316-26-9 | Dimethyl caffeic acid | 973.45 ± 18.33 | 119.14 ± 2.26 | 116.99 ± 1.11 | 78.89 ± 3.48 | 234.71 ± 5.27 |
14 | 104-54-1 | Cinnamyl alcohol | 44.63 ± 1.05 | 0.00 ± 0.00 | 0.00 ± 0.00 | 5.17 ± 0.13 | 0.00 ± 0.00 |
15 | 140-10-3 | Cinnamic acid | 93.79 ± 2.05 | 45.63 ± 1.18 | 60.23 ± 0.73 | 48.53 ± 0.73 | 48.69 ± 1.93 |
16 | 943-89-5 | 4-Methoxycinnamic acid | 61.30 ± 1.53 | 23.33 ± 0.24 | 15.62 ± 0.51 | 2.12 ± 0.19 | 50.13 ± 2.87 |
17 | 117-39-5 | Quercetin | 189.64 ± 3.85 | 79.06 ± 0.54 | 39.80 ± 0.68 | 27.74 ± 0.97 | 52.70 ± 0.27 |
18 | 548-82-3 | Pinobanksin | 657.94 ± 4.10 | 285.60 ± 5.09 | 254.07 ± 2.12 | 198.86 ± 4.44 | 283.73 ± 6.52 |
19 | 520-36-5 | Apigenin | 640.41 ± 8.18 | 282.52 ± 6.91 | 209.54 ± 7.74 | 201.01 ± 4.85 | 238.07 ± 5.49 |
20 | 520-18-3 | Kaempferol | 419.10 ± 4.74 | 184.30 ± 4.31 | 111.89 ± 3.32 | 129.04 ± 4.91 | 151.98 ± 1.87 |
21 | 480-19-3 | Isorhamnetin | 48.65 ± 0.65 | 50.82 ± 0.31 | 10.75 ± 0.15 | 29.16 ± 0.48 | 33.61 ± 0.53 |
22 | 480-40-0 | Chrysin | 5766.55 ± 152.14 | 994.83 ± 7.52 | 533.32 ± 5.60 | 343.91 ± 5.69 | 1046.65 ± 29.28 |
23 | 480-39-7 | Pinocembrin | 1626.32 ± 39.96 | 1111.27 ± 17.88 | 407.40 ± 12.02 | 588.16 ± 11.89 | 907.82 ± 14.80 |
24 | 480-44-4 | Acacetin | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 246.82 ± 6.96 | 214.15 ± 2.69 |
25 | 548-83-4 | Galangin | 664.26 ± 3.82 | 353.08 ± 4.70 | 9.52 ± 0.50 | 184.24 ± 4.21 | 405.70 ± 3.94 |
26 | 480-11-5 | Oroxylin A | 74.93 ± 1.11 | 87.13 ± 1.65 | 33.18 ± 1.05 | 79.27 ± 3.08 | 73.33 ± 0.75 |
27 | 480-37-5 | (+/−)-Pinostrobin | 74.06 ± 0.65 | 1029.32 ± 9.31 | 50.21 ± 0.61 | 164.09 ± 2.28 | 281.38 ± 3.74 |
Total alcohol | 44.63 | 0.00 | 0.00 | 5.17 | 0.00 | ||
Total flavan-3-ols | 29.23 | 6.77 | 12.32 | 4.05 | 5.64 | ||
Total flavanones | 74.06 | 1029.32 | 50.21 | 164.09 | 281.38 | ||
Total flavanonols | 2284.26 | 1396.86 | 661.46 | 787.03 | 1191.55 | ||
Total flavones | 6486.90 | 1364.48 | 776.03 | 871.01 | 1572.20 | ||
Total flavonols | 1321.65 | 667.25 | 253.07 | 378.56 | 654.34 | ||
Total phenolic acids | 4577.21 | 4371.53 | 6326.85 | 5503.29 | 4870.02 | ||
Total flavonoids | 10196.09 | 4464.69 | 1753.09 | 2204.74 | 3705.10 | ||
Total phenolics | 14773.30 | 8836.22 | 8079.94 | 7708.03 | 8575.12 |
TFC (mg QE/g) | TPC (mg GAE/g) | DPPH Scavenging Activity (IC50, µg/mL) | ABTS Scavenging Activity (IC50, µg/mL) | |
---|---|---|---|---|
EEP1 | 15.55 ± 0.35 e | 100.29 ± 1.03 c | 0.93 ± 0.07 a | 0.36 ± 0.05 a |
EEP2 | 14.58 ± 0.23 d | 52.93 ± 2.08 a | 2.07 ± 0.11 c | 0.60 ± 0.17 b |
EEP3 | 8.23 ± 0.15 a | 68.46 ± 1.72 b | 1.67 ± 0.05 b | 0.31 ± 0.12 a |
EEP4 | 9.98 ± 0.15 b | 54.98 ± 1.15 a | 2.08 ± 0.09 c | 0.51 ± 0.13 a,b |
EEP5 | 13.30 ± 0.13 c | 52.65 ± 3.01 a | 1.87 ± 0.03 b | 0.33 ± 0.07 a |
Strain | EEP1 | EEP2 | EEP3 | EEP4 | EEP5 |
---|---|---|---|---|---|
MIC (MBC) (mg/mL) | |||||
Gram (+) Bacteria | |||||
Staphylococcus aureus | 1 (4) | 8 (16) | 2 (8) | 2 (8) | 2 (8) |
Bacillus cereus | 2 (32) | 4 (32) | 2 (32) | 4 (32) | 4 (32) |
Listeria monocytogenes | 4 (8) | 4 (8) | 8 (16) | 8 (16) | 8 (16) |
Enterococcus faecalis | 4 (8) | 8 (16) | 8 (16) | 8 (16) | 8 (16) |
Gram (−) Bacteria | |||||
Salmonella Enteritidis | 16 (16) | 8 (16) | 8 (16) | 16 (32) | 16 (32) |
Shigella sonnei | 4 (8) | 8 (16) | 8 (16) | 16 (32) | 8 (16) |
Klebsiella pneumoniae | 2 (8) | 8 (16) | 16 (32) | 16 (32) | 16 (32) |
Escherichia coli O157 | 16 (16) | 16 (32) | 16 (32) | 16 (32) | 16 (32) |
Proteus mirabilis | 8 (16) | 8 (16) | 8 (16) | 8 (16) | 8 (16) |
Enterobacter aerogenes | 8 (16) | 16 (32) | 8 (16) | 8 (16) | 16 (32) |
Pseudomonas aeruginosa | 8 (16) | 8 (16) | 16 (16) | 8 (16) | 8 (16) |
MIC (mg/mL) | EEP1 | EEP2 | EEP3 | EEP4 | EEP5 |
---|---|---|---|---|---|
0.5 | 0 | 0 | 0 | 0 | 0 |
1 | 9 | 0 | 0 | 0 | 0 |
2 | 27 | 0 | 18 | 9 | 9 |
4 | 55 | 18 | 18 | 18 | 18 |
8 | 82 | 82 | 73 | 64 | 64 |
16 | 100 | 100 | 100 | 100 | 100 |
32 | 100 | 100 | 100 | 100 | 100 |
EEP1 | EEP2 | EEP3 | EEP4 | EEP5 | |
---|---|---|---|---|---|
MIC (MFC) (mg/mL) | |||||
Yeast | |||||
Rhodotorula mucilaginosa | 4 (8) | 4 (8) | 8 (16) | 8 (16) | 4 (16) |
Candida albicans | 2 (4) | 4 (8) | 32 (32) | 16 (32) | 16 (16) |
Candida krusei | 4 (8) | 4 (16) | 16 (32) | 16 (32) | 8 (16) |
Saccharomyces cerevisiae | 4 (8) | 4 (8) | 16 (32) | 8 (16) | 4 (16) |
Mold | |||||
Colletotrichum gloeosporoides | 4 (4) | 2 (2) | 4 (4) | 4 (8) | 2 (2) |
Alternaria solani | 4 (4) | 2 (4) | 8 (8) | 8 (8) | 4 (4) |
Fusarium solani | 2 (4) | 4 (8) | 4 (16) | 4 (8) | 4 (4) |
Rhizopus stolonifer | 4 (32) | 4 (32) | 8 (32) | 4 (32) | 4 (32) |
Botrytis cinerea | 4 (4) | 4 (4) | 8 (8) | 4 (4) | 4 (4) |
Cladosporium cladosporoides | 8 (8) | 4 (8) | 8 (16) | 8 (16) | 4 (8) |
Aspergillus niger | 8 (16) | 4 (8) | 32 (32) | 32 (32) | 32 (32) |
Aspergillus ochraceus | 8 (8) | 8 (8) | 16 (16) | 16 (16) | 8 (8) |
Mucor mucedo | 8 (8) | 4 (4) | 8 (8) | 8 (8) | 4 (8) |
Penicillium expansum | 8 (16) | 8 (16) | 8 (16) | 8 (16) | 8 (16) |
Penicillium chrysogenum | 16 (32) | 8 (16) | 16 (32) | 16 (32) | 16 (32) |
MIC (mg/mL) | EEP 1 | EEP 2 | EEP 3 | EEP 4 | EEP 5 |
---|---|---|---|---|---|
0.5 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
2 | 13 | 13 | 0 | 0 | 7 |
4 | 60 | 80 | 13 | 27 | 60 |
8 | 93 | 100 | 60 | 67 | 80 |
16 | 100 | 100 | 87 | 93 | 93 |
32 | 100 | 100 | 100 | 100 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pobiega, K.; Kraśniewska, K.; Przybył, J.L.; Bączek, K.; Żubernik, J.; Witrowa-Rajchert, D.; Gniewosz, M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules 2019, 24, 2965. https://doi.org/10.3390/molecules24162965
Pobiega K, Kraśniewska K, Przybył JL, Bączek K, Żubernik J, Witrowa-Rajchert D, Gniewosz M. Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules. 2019; 24(16):2965. https://doi.org/10.3390/molecules24162965
Chicago/Turabian StylePobiega, Katarzyna, Karolina Kraśniewska, Jarosław L. Przybył, Katarzyna Bączek, Joanna Żubernik, Dorota Witrowa-Rajchert, and Małgorzata Gniewosz. 2019. "Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts" Molecules 24, no. 16: 2965. https://doi.org/10.3390/molecules24162965
APA StylePobiega, K., Kraśniewska, K., Przybył, J. L., Bączek, K., Żubernik, J., Witrowa-Rajchert, D., & Gniewosz, M. (2019). Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts. Molecules, 24(16), 2965. https://doi.org/10.3390/molecules24162965