Antibacterial and Antispore Activities of Isolated Compounds from Piper cubeba L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation
2.2. Antibacterial Activity of Bioactive Compounds
2.2.1. Disc Diffusion Assay (DDA)
2.2.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the Isolated Compounds
2.3. Antispore Activity
2.3.1. Sporicidal Activities of β-Asarone against Spores of Bacillus subtilis, Bacillus cereus, Bacillus pumilus, and Bacillus megaterium
2.3.2. Sporicidal Activities of Asaronaldehyde Against Spores of Bacillus subtilis, Bacillus cereus, Bacillus pumilus, and Bacillus megaterium
3. Materials and Methods
3.1. Materials
3.2. Plant Materials
3.3. Extraction Procedure
3.4. Liquid–Liquid Partition of P. cubeba L. Extract
3.5. Isolation of Compounds by Chromatographic Techniques
3.5.1. Thin Layer Chromatography (TLC)
3.5.2. Column Chromatography
3.5.3. Spectroscopic Data of Compounds 1 and 2
β-asarone
Asaronaldehyde
3.6. Antibacterial Activity Assay
3.6.1. Sample Preparation
3.6.2. Disc Diffusion Assay (DDA)
3.6.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.7. Antispores Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lim, T.K. Edible Medicinal and Non-Medicinal Plants: Fruits; Springer Science & Business Media: New York, NY, USA, 2012; Volume 6, pp. 311–321. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- McGaw, L.J.; Jäger, A.K.; Van Staden, J. Antibacterial, anthelmintic and anti-amoebic activity in South African medicinal plants. J. Ethnopharmacol. 2000, 72, 247–263. [Google Scholar] [CrossRef]
- Dung, N.T.; Van, N.T.H.; Ty, P.D.; Taylor, W.C. Some chemical constituents isolated from Acorus tatarinowii Schott. J. Chem. 2007, 45, 356–362. [Google Scholar] [CrossRef]
- Judzentiene, A.; Butkiene, R. Chemical composition of the essential oils of wild Helichrysum arenarium (L.) with differently colored inflorescences from Eastern Lithuania. J. Essent. Oil Res. 2006, 18, 80–83. [Google Scholar] [CrossRef]
- Chellian, R.; Pandy, V.; Mohamed, Z. Pharmacology and toxicology of α- and β-Asarone: A review of preclinical evidence. Phytomedicine 2017, 32, 41–58. [Google Scholar] [CrossRef]
- Syarif, R.A.; Rasyid, R.; Najib, A. Dringo rhizome (Acorus calamus L.): A potential source high β-asarone. J. Chem. Pharm. Res. 2015, 7, 258–261. [Google Scholar]
- Madaka, F.; Wattanapiromsakul, C.; Sudsai, T.; Supinya Tewtrakul, S. Anti-allergic activity of compounds from Boesenbergia thorelii. Songklanakarin. J. Sci. Technol. 2013, 35, 197–201. [Google Scholar]
- Devi, A.S.; Bawankar, R.; Babu, S. Current status on biological activities of Acorus calamus—A. review. Int. J. Pharm. Pharm. Sci. 2014, 10, 66–71. [Google Scholar]
- Momin, R.A.; De Witt, D.L.; Nair, M.G. Inhibition of cyclooxygenase (COX) enzymes by compounds from Daucus carota L. Seeds. Phytother. Res. 2003, 17, 976–979. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef]
- Tippayatum, P.; Chonhenchob, V. Antibacterial activities of thymol, eugenol, and nisin against some food spoilage bacteria. J. Nat. Sci. 2007, 41, 319–323. [Google Scholar]
- Rukayadi, Y.; Lau, K.Y.; Zainin, N.S.; Zakaria, M.; Abas, F. Screening of antimicrobial activity of tropical edible medicinal plant extracts against five standard microorganisms for natural food preservatives. Int. Food Res. J. 2013, 20, 2905–2910. [Google Scholar]
- Mokbel, M.S.; Hashinaga, F. Evaluation of the antimicrobial activity of extract from limitan (Citrus grandis Osbeck) fruit peel. Pak. J. Biol. Sci. 2005, 8, 1090–1095. [Google Scholar]
- Beltrame, F.L.; Pessini, G.L.; Doro, D.L.; Dias Filho, B.P.; Bazotte, R.B.; Aparício, D.; Cortez, G. Evaluation of the antidiabetic and antibacterial activity of Cissus sicyoides. Braz. Arch. Biol. Technol. 2002, 45, 21–25. [Google Scholar] [CrossRef]
- Bayor, M.T.; Gbedema, S.Y.; Annan, K. The antimicrobial activity of Croton membranaceus, a species used in formulations for measles in Ghana. J. Pharm. Phytother. 2009, 1, 47–51. [Google Scholar]
- Bumrela, S.B.; Naik, S.R. Identification of β -carotene and β -sitosterol in methanolic extract of Dipteracanthus patulus (Jacq) nees and their role in antimicrobial and antioxidant activity. Int. J. Phytomed. 2011, 3, 204–215. [Google Scholar]
- Sabitha, R.A.; Satyakala, M.; Sandya, D.V.; Suryanarayana, M.U. Evaluation of antibacterial activity from rhizome extract of Acorus calamus Linn. J. Sci. Ind. Res. 2003, 62, 529–650. [Google Scholar]
- Radusiene, J.; Judzentiene, A.; Peeiulyte, D.; Tanulis, V. Essential oil composition and an antimicrobial assay of Acorus calamus leave from different wild populations. Plant Genet. Resour. Charac. Utiliz. 2006, 5, 37–44. [Google Scholar] [CrossRef]
- Dilika, F.; Bremner, P.; Meyer, J.J. Antibacterial activity of linoleic and oleic acids isolated from Helichrysum pedunculatum: A plant used during circumcision rites. Fitoterapia 2000, 71, 450–452. [Google Scholar] [CrossRef]
- Lawrence, H.A.; Palombo, E.A. Activity of essential oils against Bacillus subtilis spores. J. Microbiol. Biotechnol. 2009, 19, 1590–1595. [Google Scholar] [CrossRef]
- Tripoli, E.; Giammanco, M.; Tabacchi, G.; Di Majo, D.; Giammanco, S.; La Guardia, M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005, 18, 98–112. [Google Scholar] [CrossRef]
- Hamad, A.; Mahardika, M.G.P.; Yuliani, I.; Hartanti, D. Chemical constituents and antimicrobial activity of essential oils of Syzygium polyanthum and Syzygium aromaticum. Rasayan J. Chem. 2017, 10, 564–569. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Singh, G.; Marimuthu, P.; de Heluani, C.S.; Catalan, C.A.N. Chemical constituents, antioxidative and antimicrobial activities of essential oil and oleoresin of tailed pepper (Piper cubeba L.). Int. J. Food Eng. 2007, 3. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and multi-beneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem. 2014, 62, 7652–7670. [Google Scholar] [CrossRef]
- Rukayadi, Y.; Lee, K.; Han, S.; Kim, S.; Hwang, J.K. Antibacterial and sporicidal activity of macelignan isolated from nutmeg (Myristica fragrans Houtt.) against Bacillus cereus. Food Sci. Biotechnol. 2009, 18, 1301–1304. [Google Scholar]
- Toroglu, S. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species. J. Environ. Biol. 2007, 28, 551–559. [Google Scholar]
- Rukayadi, Y.; Shim, J.S.; Hwang, J.K. Screening of Thai medicinal plants for anticandidal activity. Mycoses 2008, 51, 308–312. [Google Scholar] [CrossRef]
- Madiha, I.Y.; Rukayadi, Y.; Norhayati, H. Effects of extraction conditions on yield, total phenolic contents and antibacterial activity of methanolic Cinnamomum zeylanicum Blume leaves extract. Int. Food Res. J. 2017, 24, 779–786. [Google Scholar]
- Stahl, E. (Ed.) Thin-Layer Chromatography: A Laboratory Handbook; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Performance Standards for Antimicrobial Disk Susceptibility Tests Approved Standard-Eleventh Edition; CLSI Document M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Kida, N.; Mochizuki, Y.; Taguchi, F. An effective iodide formulation for killing Bacillus and Geobacillus spores over a wide temperature range. J. Appl. Microbiol. 2004, 97, 402–409. [Google Scholar] [CrossRef]
- American Type Culture Collection (ATCC). ATCC Animal Cell Culture Guide; American Type Culture Collection: Manassas, VA, USA, 2014. [Google Scholar]
Sample Availability: Samples of the extracts are available from the authors. |
Bacillus sp. | Inhibition Zone (mm) ± SD | |||
---|---|---|---|---|
AA | β-A | CHX | DMSO | |
B. cereus ATCC33019 | 8.00 ± 0.00 | 9.31 ± 0.50 | 11.4 ± 0.31 | n.a |
B. subtilis ATCC6633 | 8.81 ± 0.24 | 8.51 ± 0.50 | 11.1 ± 0.10 | n.a |
B. pumilus ATCC14884 | 7.81 ± 0.22 | 8.51 ± 0.50 | 11.1 ± 0.10 | n.a |
B. megaterium ATCC14581 | 7.21 ± 0.21 | 8.15 ± 0.50 | 11.6 ± 0.30 | n.a |
Bacillus sp. | Concentration of Compounds (µg/mL) | |||
---|---|---|---|---|
Asaronaldehyde | β-Asarone | |||
MICs | MBCs | MICs | MBCs | |
B. cereus ATCC33019 | 125 | 500 | 125 | 250 |
B. subtilis ATCC6633 | 125 | 500 | 125 | 250 |
B. pumilus ATCC14884 | 125 | 500 | 125 | 250 |
B. megaterium ATCC14581 | 125 | 500 | 125 | 250 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 6.17 ± 0.15 | a 6.17 ± 0.15 | a 6.17 ± 0.15 | a 6.17 ± 0.15 |
62.5 | b 5.87 ± 0.02 | b 5.58 ± 0.02 | b 5.35 ± 0.03 | b 5.13 ± 0.05 |
125 | c 4.63 ± 0.03 | c 4.51 ± 0.02 | c 4.42 ± 0.02 | c 4.30 ± 0.02 |
250 | c 4.12 ± 0.02 | c 4.10 ± 0.10 | d 3.98 ± 0.02 | d 3.87 ± 0.02 |
500 | d 3.88 ± 0.01 | d 3.67 ± 0.01 | d 3.48 ± 0.04 | d 3.25 ± 0.07 |
1000 | d 3.08 ± 0.23 | e 2.74 ± 0.04 | e 0.00 ± 0.00 | e 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 6.24 ± 0.05 | a 6.24 ± 0.05 | a 6.24 ± 0.05 | a 6.24 ± 0.05 |
62.5 | b 5.90 ± 0.04 | b 5.61 ± 0.06 | b 5.37 ± 0.03 | b 5.18 ± 0.07 |
125 | c 4.66 ± 0.02 | c 4.55 ± 0.05 | c 4.47 ± 0.03 | c 4.33 ± 0.04 |
250 | c 4.17 ± 0.02 | c 4.16 ± 0.05 | d 3.99 ± 0.10 | d 3.90 ± 0.02 |
500 | d 3.88 ± 0.01 | d 3.71 ± 0.05 | d 3.52 ± 0.06 | d 3.25 ± 0.13 |
1000 | d 3.15 ± 0.40 | e 2.81 ± 0.05 | e 0.00 ± 0.00 | e 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 6.37 ± 0.04 | a 6.37 ± 0.04 | a 6.37 ± 0.04 | a 6.37 ± 0.04 |
62.5 | b 5.80 ± 0.04 | b 5.50 ± 0.06 | b 5.44 ± 0.04 | b 5.26 ± 0.05 |
125 | c 4.68 ± 0.02 | c 4.55 ± 0.05 | c 4.47 ± 0.02 | c 4.33 ± 0.04 |
250 | c 4.17 ± 0.02 | c 4.16 ± 0.05 | d 3.99 ± 0.10 | d 3.90 ± 0.02 |
500 | d 3.88 ± 0.01 | d 3.71 ± 0.05 | d 3.53 ± 0.07 | d 3.21 ± 0.07 |
1000 | d 3.51 ± 0.15 | d 3.43 ± 0.05 | e 0.00 ± 0.00 | e 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 6.32 ± 0.04 | a 6.32 ± 0.04 | a 6.32 ± 0.04 | a 6.32 ± 0.04 |
62.5 | b 5.70 ± 0.04 | b 5.65 ± 0.06 | b 5.41 ± 0.04 | b 5.12 ± 0.05 |
125 | c 4.67 ± 0.02 | c 4.50 ± 0.05 | c 4.43 ± 0.02 | c 4.23 ± 0.04 |
250 | c 4.13 ± 0.02 | c 4.11 ± 0.05 | d 3.89 ± 0.10 | d 3.40 ± 0.02 |
500 | d 3.81 ± 0.01 | d 3.67 ± 0.04 | d 3.33 ± 0.07 | d 3.11 ± 0.07 |
1000 | d 3.41 ± 0.15 | d 3.14 ± 0.04 | e 0.00 ± 0.00 | e 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 5.70 ± 0.13 | a 5.70 ± 0.13 | a 5.70 ± 0.13 | a 5.70 ± 0.13 |
62.5 | b 4.58 ± 0.08 | b 4.53 ± 0.07 | b 4.45 ± 0.09 | b 4.32 ± 0.05 |
125 | b 4.52 ± 0.09 | b 4.41 ± 0.15 | b 4.29 ± 0.09 | b 4.18 ± 0.12 |
250 | b 4.47 ± 0.15 | b 4.35 ± 0.19 | b 4.23 ± 0.17 | b 4.05 ± 0.15 |
500 | c 3.40 ± 0.21 | c 3.20 ± 0.09 | c 3.00 ± 0.00 | c 0.00 ± 0.00 |
1000 | d 0.00 ± 0.00 | d 0.00 ± 0.00 | d 0.00 ± 0.00 | c 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 6.39 ± 0.12 | a 6.39 ± 0.12 | a 6.39 ± 0.12 | a 6.39 ± 0.12 |
62.5 | b 4.66 ± 0.02 | b 4.58 ± 0.02 | b 4.49 ± 0.06 | b 4.26 ± 0.10 |
125 | b 4.61 ± 0.09 | b 4.54 ± 0.07 | b 4.50 ± 0.12 | b 4.37 ± 0.05 |
250 | b 4.58 ± 0.07 | b 4.33 ± 0.04 | b 4.14 ± 0.04 | c 3.93 ± 0.05 |
500 | b 4.30 ± 0.08 | c 3.80 ± 0.11 | c 3.60 ± 0.09 | c 3.58 ± 0.07 |
1000 | c 3.83 ± 0.32 | c 3.40 ± 0.09 | c 3.10 ± 0.08 | d 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 5.48 ± 0.04 | a 5.48 ± 0.04 | a 5.48 ± 0.04 | a 5.48 ± 0.04 |
62.5 | b 4.77 ± 0.11 | b 4.69 ± 0.06 | b 4.59 ± 0.07 | b 4.47 ± 0.08 |
125 | b 4.72 ± 0.06 | b 4.63 ± 0.05 | b 4.55 ± 0.05 | b 4.38 ± 0.04 |
250 | b 4.63 ± 0.05 | b 4.52 ± 0.04 | b 4.40 ± 0.04 | b 4.28 ± 0.10 |
500 | b 4.00 ± 0.80 | c 3.90 ± 0.09 | c 3.75 ± 0.50 | c 3.60 ± 0.60 |
1000 | c 3.30 ± 0.80 | c 3.00 ± 0.00 | d 0.00 ± 0.0 | d 0.00 ± 0.00 |
Concentration (µg/mL (% w/v)) | Time (h) | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
0.00 | a 5.31 ± 0.04 | a 5.31 ± 0.04 | a 5.31 ± 0.04 | a 5.31 ± 0.04 |
62.5 | b 4.50 ± 0.17 | b 4.41 ± 0.18 | b 4.34 ± 0.18 | b 4.24 ± 0.21 |
125 | b 4.43 ± 0.10 | b 4.33 ± 0.15 | b 4.23 ± 0.22 | b 4.15 ± 0.20 |
250 | b 4.39 ± 0.09 | b 4.24 ± 0.18 | b 4.10 ± 0.18 | b 3.94 ± 0.28 |
500 | c 3.90 ± 0.08 | c 3.80 ± 0.09 | c 3.58 ± 0.12 | c 3.36 ± 0.14 |
1000 | c 3.20 ± 0.90 | c 3.00 ± 0.00 | d 0.00 ± 0.00 | d 0.00 ± 0.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqadeeri, F.; Rukayadi, Y.; Abbas, F.; Shaari, K. Antibacterial and Antispore Activities of Isolated Compounds from Piper cubeba L. Molecules 2019, 24, 3095. https://doi.org/10.3390/molecules24173095
Alqadeeri F, Rukayadi Y, Abbas F, Shaari K. Antibacterial and Antispore Activities of Isolated Compounds from Piper cubeba L. Molecules. 2019; 24(17):3095. https://doi.org/10.3390/molecules24173095
Chicago/Turabian StyleAlqadeeri, Fatimah, Yaya Rukayadi, Faridah Abbas, and Khozirah Shaari. 2019. "Antibacterial and Antispore Activities of Isolated Compounds from Piper cubeba L." Molecules 24, no. 17: 3095. https://doi.org/10.3390/molecules24173095
APA StyleAlqadeeri, F., Rukayadi, Y., Abbas, F., & Shaari, K. (2019). Antibacterial and Antispore Activities of Isolated Compounds from Piper cubeba L. Molecules, 24(17), 3095. https://doi.org/10.3390/molecules24173095