Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity of SLHs
2.2. Isolation and Purification of Antioxidant Peptides
2.2.1. Ultrafiltration
2.2.2. Gel Filtration Chromatography
2.2.3. RP-HPLC Purification
2.3. Identification of Antioxidant Peptides by ESI-MS/MS
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of S. Limacinum Hydrolysates (SLHs)
3.3. Determination of Antioxidant Activities of SLHs
3.3.1. DPPH Radical Scavenging Activity Assay
3.3.2. Hydroxyl Radical (•OH) Scavenging Activity Assay
3.3.3. Reducing Power Assay
3.4. Purification of Antioxidant Peptide from SLHs
3.4.1. Ultrafiltration
3.4.2. Gel Filtration Chromatography
3.4.3. RP-HPLC
3.5. Identification of Antioxidant Peptide by ESI-MS/MS
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Oxidants antioxidants and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 1993, 90, 7915–7922. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.Y.; Zeng, M.Y.; Wang, D.F.; Liu, Z.Y.; Zhao, Y.H.; Yang, H.C. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 2008, 107, 1485–1493. [Google Scholar] [CrossRef]
- Zheng, L.F.; Yu, H.C.; Wei, H.K.; Xing, Q.; Zou, Y.; Zhou, Y.F.; Peng, J. Antioxidative peptides of hydrolysate prepared from fish skin gelatin using ginger protease activate antioxidant response element-mediated gene transcription in ipec-j2 cells. J. Funct. Foods 2018, 51, 104–112. [Google Scholar] [CrossRef]
- Robert, M.; Zatylny-Gaudin, C.; Fournier, V.; Corre, E.; Corguillé, G.L.; Bernay, B.; Henry, J. Transcriptomic and peptidomic analysis of protein hydrolysates from the white shrimp (L. vannamei). J. Biotechnol. 2014, 186, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Wang, J.; Li, L.H.; Yang, X.Q.; Wang, J.X.; Hu, X. Purification and identification of an antioxidant peptide from pinctada fucata muscle. CyTA J. Food 2018, 16, 1–9. [Google Scholar] [CrossRef]
- Admassu, H.; Gasmalla, M.A.A.; Yang, R.J.; Zhao, W. Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties. J. Food Sci. 2018, 83, 6–16. [Google Scholar] [CrossRef]
- Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int. 2007, 15, 1–9. [Google Scholar] [CrossRef]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Cui, Y.F.; Rashid, N.; Hu, N.X.; Rehman, M.S.U.; Han, J.I. Electricity generation and microalgae cultivation in microbial fuel cell using microalgae-enriched anode and bio-cathode. Energy Convers. Manage. 2014, 79, 674–680. [Google Scholar] [CrossRef]
- Shanab, S.M.; Mostafa, S.S.; Shalaby, E.A.; Mahmoud, G.I. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac. J. Trop. Biomed. 2012, 2, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.J.; Chang, J.S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.Y.; Zhao, M.M.; Shi, J.; Wang, J.S.; Jiang, Y.M.; Cui, C.; Kakuda, Y.; Xue, S.J. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 2008, 108, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Ren, J.Y.; Sun, W.Z.; You, L.J.; Yang, B.; Zhao, M.M. Isolation and identification of antioxidative peptides from frog (Hylarana guentheri) protein hydrolysate by consecutive chromatography and electrospray ionization mass spectrometry. Appl. Biochem. Biotechnol. 2014, 173, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Sampath Kumar, N.S.; Nazeer, R.A.; Jaiganesh, R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein. Peptides 2011, 32, 1496–1501. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; He, J.T.; Zhuang, Y.L.; Sun, L.P. Purification and identification of antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) frame protein. Molecules 2012, 17, 12836–12850. [Google Scholar] [CrossRef] [PubMed]
- Megias, C.; Yust, M.D.; Pedroche, J.; Lquari, H.; Giron-Calle, J.; Alaiz, M.; Millan, F.; Vioque, J. Purification of an ACE inhibitory peptide after hydrolysis of sunflower (Helianthus annuus L.) protein isolates. J. Agric. Food Chem. 2004, 52, 1928–1932. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, F.; Wang, X.; Ji, B.P.; Wu, Y.N. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 2007, 102, 1135–1143. [Google Scholar] [CrossRef]
- Ma, Z.L.; Zhang, W.J.; Yu, G.C.; He, H.; Zhan, Y. The primary structure identification of a corn peptide facilitating alcohol metabolism by HPLC–MS/MS. Peptides 2012, 37, 138–143. [Google Scholar] [CrossRef]
- Biemann, K. Mass spectrometry of peptides and proteins. Annu. Rev. Biochem. 1992, 61, 977–1010. [Google Scholar] [CrossRef]
- Sun, S.W.; Yu, C.G.; Qiao, Y.T.; Lin, Y.; Dong, G.J.; Liu, C.N.; Zhang, L.F.; Zhang, Z.; Cai, J.J.; Zhang, H.; et al. Deriving the probabilities of water loss and ammonia loss for amino acids from tandem mass spectra. J. Proteome Res. 2008, 7, 202–208. [Google Scholar] [CrossRef]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Xiong, Y.L.; Zhai, J.J.; Zhu, H.N.; Dziubla, T. Fractionation and evaluation of radical scavenging peptides from in vitro digests of buckwheat protein. Food Chem. 2010, 118, 582–588. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.J.; Chen, J.; Tang, X.Y.; Xiong, Y.L. Reducing, radical scavenging, and chelation properties of in vitro digests of alcalase-treated zein hydrolysate. J. Agric. Food Chem. 2008, 56, 2714–2721. [Google Scholar] [CrossRef]
- Wu, H.C.; Chen, H.M.; Shiau, C.Y. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36, 949–957. [Google Scholar] [CrossRef]
- Chen, H.M.; Muramoto, K.; Yamauchi, F.; Fujimoto, K.; Nokihara, K. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. J. Agric. Food Chem. 1998, 46, 49–53. [Google Scholar] [CrossRef]
- Rajapakse, N.; Mendis, E.; Byun, H.G.; Kim, S.K. Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. J. Nutr. Biochem. 2005, 16, 562–569. [Google Scholar] [CrossRef]
- Saito, K.; Jin, D.H.; Ogawa, T.; Muramoto, K.; Hatakeyama, E.; Yasuhara, T.; Nokihara, K. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. J. Agric. Food Chem. 2003, 51, 3668–3674. [Google Scholar] [CrossRef]
- Davalos, A.; Miguel, M.; Bartolome, B.; Lopez-Fandino, R. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J. Food Prot. 2004, 67, 1939–1944. [Google Scholar] [CrossRef]
- Suetsuna, K. Antioxidant peptides from the protease digest of prawn (Penaeus japonicus) muscle. Mar. Biotechnol. 2000, 2, 5–10. [Google Scholar] [CrossRef]
- Gu, L.J.; Zhao, M.M.; Li, W.Z.; You, L.J.; Wang, J.F.; Wang, H.Y.; Ren, J.Y. Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure. Food Chem. Toxicol. 2012, 50, 4085–4091. [Google Scholar] [CrossRef]
- Ajibola, C.F.; Fashakin, J.B.; Fagbemi, T.N.; Aluko, R.E. Effect of peptide size on antioxidant properties of african yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 2011, 12, 6685–6702. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of kelussia odoratissima mozaff in model and food systems. Food Chem. 2007, 105, 57–64. [Google Scholar] [CrossRef]
Sample Availability: Samples of the Schizochytrium Limacinum are available from the authors. |
Samples | Parameters for Enzymatic Hydrolysis | Antioxidant Activities 1 (IC50)(mg/mL) | |||
---|---|---|---|---|---|
pH | Temperature (°C) | DPPH 2 | •OH 3 | Reducing Power 4 | |
Papain | 6.5 | 65 | 1.77 ± 0.09 a | 3.12 ± 0.13 a | 0.95 ± 0.06 f |
Trypsin | 8.0 | 37 | 1.74 ± 0.11 a | 3.29 ± 0.19 a | 1.14 ± 0.10 e |
Flavourzyme | 7.5 | 50 | 1.49 ± 0.06 b | 2.51 ± 0.02 b | 1.20 ± 0.03 de |
Protamex | 6.5 | 50 | 1.46 ± 0.03 b | 2.56 ± 0.04 b | 1.29 ± 0.03 bc |
Alcalase 2.4L | 8.0 | 50 | 1.55 ± 0.05 b | 2.49 ± 0.05 b | 1.19 ± 0.02 de |
Fla + Pro 5 | 7.5 | 50 | 1.45 ± 0.05 b | 2.60 ± 0.08 b | 1.31 ± 0.04 bc |
Fla + Alc 6 | 7.5 | 50 | 1.42 ± 0.02 b | 1.87 ± 0.02 c | 1.37 ± 0.02 ab |
Pro + Alc 7 | 7.5 | 50 | 1.28 ± 0.03 c | 1.66 ± 0.02 d | 1.42 ± 0.01 a |
Fla + Pro + Alc 8 | 7.5 | 50 | 1.54 ± 0.07 b | 1.69 ± 0.06 cd | 1.26 ± 0.04 cd |
Samples | Molecular Weight (kDa) | Antioxidant Activities 1 | |
---|---|---|---|
DPPH(%) 2 | Reducing Power 3 | ||
SLHs | 26.44 ± 2.06 b | 0.31 ± 0.01 b | |
SLH-I | <50 | 28.03 ± 3.65 b | 0.33 ± 0.01 b |
SLH-II | <10 | 31.66 ± 2.83 b | 0.38 ± 0.04 b |
SLH-III | <5 | 65.50 ± 4.21 a | 0.48 ± 0.03 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Yang, X.; Wu, Q.; Li, L.; Wu, Y.; Chen, S.; Li, R.; Ren, J. Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules 2019, 24, 3004. https://doi.org/10.3390/molecules24163004
Hu X, Yang X, Wu Q, Li L, Wu Y, Chen S, Li R, Ren J. Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules. 2019; 24(16):3004. https://doi.org/10.3390/molecules24163004
Chicago/Turabian StyleHu, Xiao, Xianqing Yang, Qiong Wu, Laihao Li, Yanyan Wu, Shengjun Chen, Ruijie Li, and Jiaoyan Ren. 2019. "Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry" Molecules 24, no. 16: 3004. https://doi.org/10.3390/molecules24163004
APA StyleHu, X., Yang, X., Wu, Q., Li, L., Wu, Y., Chen, S., Li, R., & Ren, J. (2019). Purification and Identification of Antioxidant Peptides from Schizochytrium Limacinum Hydrolysates by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Molecules, 24(16), 3004. https://doi.org/10.3390/molecules24163004