Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of HS-SPME Procedure
2.1.1. Effect of Extraction Time
2.1.2. Effect of Extraction Temperature
2.1.3. Effect of Salt Addition
2.1.4. Effect of Sample Stirring
2.1.5. Effect of Sample Volume
2.2. Validation
2.2.1. Selectivity
2.2.2. Linearity, Limits of Detection (LODs) and Quantification (LOQs)
2.2.3. Accuracy and Precision
2.3. Real Samples Analysis
3. Materials and Methods
3.1. Chemicals and Materials
3.2. HS-SPME Procedure
3.3. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
3.4. Method Validation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Baker, R.D.; Baker, S.S. A Comparison of the Nutritional Value of Cow’s Milk and Nondairy Beverages. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Vanga, S.K.; Raghavan, V. How well do plant based alternatives fare nutritionally compared to cow’s milk? J. Food Sci. Technol. 2018, 55, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Pérez-González, M.; Gallardo-Chacón, J.J.; Valencia-Flores, D.; Ferragut, F. Optimization of a Headspace SPME GC–MS Methodology for the Analysis of Processed Almond Beverages. Food Anal. Methods 2014, 8, 612–623. [Google Scholar] [CrossRef]
- Tunick, M.H.; Iandola, S.K.; Van Hekken, D.L. Article Comparison of SPME Methods for Determining Volatile Compounds in Milk, Cheese, and Whey Powder. Foods 2013, 2, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Krist, S.; Unterweger, H.; Bandion, F.; Buchbauer, G. Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill.) using GC-MS. Eur. Food Res. Technol. 2004, 219, 470–473. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitcell, A.E. HS-SPME GC/MS characterization of volatiles in raw and dry-roasted almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef]
- Lee, J.; Vazquez-Araujo, L.; Adhikari, K.; Warmund, M.; Elmore, J. Volatile Compounds in Light, Medium, and Dark Black Walnut and Their Influence on the Sensory Aromatic Profile. J. Food Sci. 2011, 76, 199–204. [Google Scholar] [CrossRef]
- Bail, S.; Stuebiger, G.; Unterweger, H.; Buchbauer, G.; Krist, S. Characterization of volatile compounds and triacylglycerol profiles of nut oils using SPME-GC-MS and MALDI-TOF-MS. Eur. J. Lipid Sci. Technol. 2009, 111, 170–182. [Google Scholar] [CrossRef]
- Klein, B.; Gallardo-Chacón, J.; Codina-Torrella, I.; Trujillo, A.; Juan, B. Evaluation of Volatile Compounds of “Tiger Nut Beverage” (Orxata de Xufla) Headspace by Optimized Solid-Phase Micro-Extraction. OALib J. 2014, 1, 1–15. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, M.J.; Pawliszyn, J. Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation. Anal. Chem. 1994, 66, 844–853. [Google Scholar] [CrossRef]
- Kataoka, H.; Lord, H.L.; Pawliszyn, J. Applications of solid-phase microextraction in food analysis. J. Chromatogr. A 2000, 880, 35–62. [Google Scholar] [CrossRef]
- Zachariadis, G.A.; Langioli, A.V. Headspace solid phase microextraction for terpenes and volatile compounds determination in mastic gum extracts, mastic oil and human urine by GC-MS. Anal. Lett. 2012, 45, 993–1003. [Google Scholar] [CrossRef]
- Cognat, C.; Shepherd, T.; Verrall, S.R.; Stewart, D. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products. Food Chem. 2012, 134, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; Cava, R.; Ventanas, J.; Jensen, M.T. Headspace Solid Phase Microextraction for the Analysis of Volatiles in a Meat Product: Dry-Cured Iberian Ham. J. Agric. Food Chem. 1998, 46, 4688–4694. [Google Scholar] [CrossRef]
- Leinen, L.; Swenson, V.A.; Juntunen, H.; Mckay, S.E.; O’Hanlon, S.; Videau, P.; Gaylor, M. Profiling Volatile Constituents of Homemade Preserved Foods Prepared in Early 1950s South Dakota (USA) Using Solid-Phase Microextraction (SPME) with Gas Chromatography-Mass Spectrometry (GC-MS) Determination. Molecules 2019, 24, 660. [Google Scholar] [CrossRef]
- Bicchi, C.P.; Panero, O.M.; Pellegrino, G.M.; Vanni, A.C. Characterization of Roasted Coffee and Coffee Beverages by Solid Phase Microextraction−Gas Chromatography and Principal Component Analysis. J. Agric. Food Chem. 1997, 45, 4680–4686. [Google Scholar] [CrossRef]
- Rizzolo, A.; Polesello, A.; Polesello, S. Use of headspace capillary GC to study the development of volatile compounds in fresh fruit. J. High Resolut. Chromatogr. 1992, 15, 472–477. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.; Li, J.; Fan, W.; Jiang, W. Profile of volatile compounds in 11 brandies by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. J. Food Sci. 1999, 74, 90–99. [Google Scholar] [CrossRef]
- Rianawati, E.; Rajasekhar-Balasubramanian, R. Optimization and validation of solid phase micro-extraction (SPME) method for analysis of polycyclic aromatic hydrocarbons in rainwater and stormwater. Phys. Chem. Earth 2006, 34, 857–865. [Google Scholar] [CrossRef]
- Demyttenaere, C.R.Y.; Dagher, C.; Sandra, P.; Kallithraka, S.; Verhe, R.; De Kimpe, N. Flavour analysis of Greek white wine by solid-phase microextraction–capillary gas chromatography–mass spectrometry. J. Chromatogr A. 2003, 985, 233–246. [Google Scholar] [CrossRef]
- Achouri, A.; Boye, E.J.; Zamani, Y. Identification of volatile compounds in soymilk using solid-phase microextraction-gas chromatography. Food Chem. 2006, 99, 759–766. [Google Scholar] [CrossRef]
- Picuric-Jovanovic, K.; Milovanovic, M. Analysis of Volatile Compounds in Almond and Plum Kernel Oils. J. Am. Oil. Chem. Soc. 1993, 70, 1101–1104. [Google Scholar] [CrossRef]
- Amirshaghaghi, Z.; Emam-Djomeh, Z.; Oromiehie, A. Studies of Migration of Styrene Monomer from Polystyrene Packaging into the Food Simulant. Iran J. Chem. Eng. 2011, 8, 43–49. [Google Scholar]
- Wrolstad, R.E.; Acree, T.E.; Decker, E.A.; Penner, M.H.; Reid, D.S.; Schwartz, S.J.; Shoemaker, C.F.; Smith, D.M.; Sporns, P. Handbook of Food Analytical Chemistry, Water, Proteins, Enzymes, Lipids, And Carbohydrates; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
Sample Availability: Samples of the compounds used for method validation and relative quantification of the analytes in real samples are available from the authors. |
Analyte | Linear Range (ng g−1) | Regression Equation | R2 | LOQs (ng g−1) | LODs (ng g−1) |
---|---|---|---|---|---|
heptane | 10–5000 | y = (0.0311 ± 0.0017)x + (0.0055 ± 0.0047) | 0.9942 | 1.00 | 0.33 |
a-pinene | 500–10000 | y = (0.2883 ± 0.0102)x + 0.507 ± 0.024) | 0.995 | 5.00 | 1.67 |
toluene | 10–10000 | y = (0.7595x ± 0.06167) + (0.1382 ± 0.0141) | 0.9983 | 1.00 | 0.33 |
2-methylpyrazine | 10–10000 | y = (0.3866x ± 0.0360) + (0.0757 ± 0.0068) | 0.9963 | 1.00 | 0.33 |
3-heptanone | 10–10000 | y = (0.3523x ± 0.0152) + (0.0859 ± 0.0761) | 0.9944 | 1.00 | 0.33 |
heptanal | 100–25000 | y = (0.0571x ± 0.0006) + (0.0024 ± 0.0032) | 0.9996 | 1.00 | 0.33 |
2-octanone | 10–2500 | y = (1.0157x ± 0.0508) + (0.0697 ± 0.0623) | 0.9925 | 1.00 | 0.33 |
1-heptanol | 10–25000 | y = (0.8018x ± 0.0104) + (0.0084 ± 0.0003) | 0.992 | 1.00 | 0.33 |
benzaldehyde | 10–25000 | y = (1.644x ± 0.0245) − (0.5051 ± 0.0301) | 0.992 | 1.00 | 0.33 |
1-octanol | 10–25000 | y = (1.979x ± 0.0256) + (0.2554 ± 0.0244) | 0.999 | 1.00 | 0.33 |
Analyte | Within Day (n = 5) | Between Days (3 × 4 days) | ||||
---|---|---|---|---|---|---|
Found ± SD (μg g−1) | RSD (%) | Recovery (%) | Found ± SD (μg g−1) | RSD (%) | Recovery (%) | |
Heptane | 966 ± 55 | 5.7 | 96.6 | 984 ± 11 | 11.0 | 98.5 |
a-pinene | 1013 ± 108 | 10.7 | 101.3 | 997 ± 12 | 12.1 | 99.8 |
Toluene | 1016 ± 80 | 7.9 | 101.6 | 979 ± 78 | 8.0 | 97.9 |
2-methylpyrazine | 1157 ± 17 | 1.4 | 115.7 | 1023 ± 18 | 1.8 | 102.3 |
3-heptanone | 1123 ± 19 | 1.7 | 112.3 | 1026 ± 34 | 3.4 | 102.6 |
Heptanal | 813 ± 24 | 2.9 | 81.3 | 856 ± 33 | 3.9 | 85.7 |
2-octanone | 991 ± 12 | 1.2 | 99.1 | 943 ± 12 | 1.3 | 94.4 |
1-heptanol | 1182 ± 46 | 3.9 | 118.2 | 1094 ± 81 | 7.4 | 109.4 |
benzaldehyde | 1157 ± 52 | 4.6 | 115.7 | 1067 ± 131 | 12.3 | 106.7 |
1-octanol | 889 ± 112 | 1.3 | 88.9 | 921 ± 45 | 4.9 | 92.1 |
Peak No | RT (min) | Compound | Reference Compound | Content (ng g−1) | ||||
---|---|---|---|---|---|---|---|---|
Walnut | Peanut | Choco almond | Almond Sample 1 | Almond Sample 2 | ||||
1 | 4.431 | Heptane * | Heptane | 112.1 ± 21.2 | 40.1 ± 6.3 | 75.4 ± 8.7 | 79.1 ± 2.1 | 183.6 ± 9.7 |
2 | 4.790 | 3-methyl-hexane | Heptane | 34.1 ±2.3 | 38.5 ± 1.3 | 58 ± 9.3 | 53.4 ± 7.3 | 47.5 ± 2.7 |
3 | 4.886 | 2,3,3-trimethylpentane * | Heptane | 47.2 ± 5.4 | 40.4 ± 2 | 88.3 ± 6.2 | 77.4 ± 5.5 | ND |
4 | 5.214 | 2-methylpropanal | Heptanal | ND | 70.5 ± 1.4 | 12 ± 2.2 | 11.4 ± 1.1 | ND |
5 | 5.617 | Acetone | 3-heptanone | ND | ND | ND | 1.3 ± 0.3 | ND |
6 | 5.797 | 1,2,4-trimethylcyclopentane | Heptane | ND | 104.6 ± 11.2 | ND | 57.6 ± 9.1 | ND |
7 | 7.020 | 2-butanone * | 3-heptanone | ND | ND | 4.3 ± 0.8 | 2.1 ± 0.1 | ND |
8 | 7.307 | 2-methyl-butanal * | Heptanal | 290.6 ± 11.1 | 110.6 ± 7.5 | 2160.2 ± 108.2 | 1180.6 ± 153.4 | 220.6 ± 15.3 |
9 | 7.424 | 3-methyl-butanal * | Heptanal | 220.4 ± 13.4 | 60.4 ± 5.4 | 4920.3 ± 202.3 | 820.4 ± 56.1 | 260.3 ± 17.3 |
10 | 8.074 | Ethanol | 1-heptanol | 121.2 ± 12.1 | 1.3 ± 0.2 | ND | 2.3 ± 0.4 | ND |
11 | 8.412 | 2-ethylfuran | - | >LOQ | ND | ND | ND | ND |
12 | 8.485 | 2,2-dimethyl-hexane | Heptane | 11.1 ± 2.2 | ND | ND | 1.21 ± 0.2 | 35.49 ± 3.2 |
13 | 9.116 | Pentanal | Heptanal | 43.3 ± 4.2 | >LOQ | 230.4 ± 11 | 2190.6 ± 1.1 | 770.4 ± 3.3 |
14 | 10.219 | a-pinene * | a-pinene | 11.3 ± 2.1 | 41 ± 5.4 | 20.2 ± 6.2 | 9.9 ± 4.1 | 9.5 ± 2.2 |
15 | 10.739 | Toluene * | Toluene | 39.3 ± 4.3 | 24.3 ± 5 | 19.5 ± 3.1 | 14.5 ± 2.1 | 26.1 ± 4.4 |
16 | 10.968 | 2,3-dimethyl-3-hexanone | 3-heptanone | Below LOQ | ND | ND | ND | ND |
17 | 11.285 | 2,3-pentanedione | 3-heptanone | 1.2 ± 0.1 | ND | 3.4 ± 0.3 | 1.7 ± 0.4 | 1.4 ± 0.2 |
18 | 11.59 | Dimethyldisulfide | - | >LOQ | ND | >LOQ | >LOQ | >LOQ |
19 | 11.854 | Hexanal * | Heptanal | 4494.2 ± 48.1 | 606.2 ± 12.1 | 254.4 ± 16.3 | 518.1 ± 23.4 | 208.5 ± 61.3 |
20 | 12.94 | 4-heptanone * | 4-Heptanone | 21.1 ± 1.3 | 32.5 ± 3.6 | 14.6 ± 4.5 | 11.1 ± 0.9 | 10.2 ± 1.3 |
21 | 12.99 | (E)-3-Penten-2-one * | 3-heptanone | ND | 14.5 ± 8.9 | 25.6 ± 7.8 | 30.4 ± 2.6 | ND |
22 | 13.134 | 4-methyl-3-Penten-2-one * | 3-heptanone | 124.5 ± 11.6 | ND | 174.5 ± 13.6 | 214.5 ± 14.3 | ND |
23 | 13.371 | 3-carene | a-pinene | ND | 8.4 ± 0.6 | 10.2 ± 3.5 | ND | ND |
24 | 13.596 | 3-heptanone * | 3-heptanone | 25.6 ± 7.3 | 41.4 ± 9.2 | 51.4 ± 0.9 | 1.4 ± 0.1 | 1.5 ± 0.2 |
25 | 14.268 | 2-butyl-Tetrahydrofuran | - | ND | ND | ND | >LOQ | ND |
26 | 14.299 | Heptanal * | Heptanal | 8.6 ± 0.9 | 170.1 ± 9.2 | 90.2 ± 8.3 | 9.8 ± 0.1 | ND |
27 | 14.556 | Limonene | a-pinene | 7.1 ± 0.4 | 6.7 ± 0.2 | 8.2 ± 0.4 | 9.7 ± 0.3 | 11.2 ± 0.5 |
28 | 15.083 | (E)-2-Hexenal * | Heptanal | ND | ND | ND | 80 ± 4 | ND |
29 | 15.29 | 1-ethyl-3-methyl-benzene | Toluene | 24.1 ± 2.2 | 2.1 ± 0.4 | 1.9 ± 1.2 | 3.2 ± 0.4 | 1.5 ± 0.2 |
30 | 15.464 | 1,2,3-trimethylbenzene | Toluene | ND | ND | ND | 4.1 ± 0.5 | ND |
31 | 15.752 | 6-methyl-2-heptanone * | 3-heptanone | ND | ND | 11.9 ± 0.9 | 19.3 ± 0.5 | 20.6 ± 1.3 |
32 | 15.889 | 1-pentanol | 1-heptanol | 11.4 ± 0.6 | 9.8 ± 0.9 | ND | ND | ND |
33 | 16.179 | Styrene | a-pinene | 9.8 ± 1.2 | ND | ND | ND | ND |
34 | 16.227 | 2-methyl-pyrazine | 2-methyl-pyrazine | 1.2 ± 0.1 | 3.4 ± 0.5 | ND | 2.3 ± 1.2 | ND |
35 | 16.541 | 2-octanone | 2-octanone | 8.1 ± 0.3 | 11 ± 1 | ND | ND | 7.6 ± 0.3 |
36 | 16.602 | Octenal * | Heptanal | 192.6 ± 3.4 | 181.4 ± 15.7 | 121.6 ± 13.1 | 303.4 ± 15.6 | 181.5 ± 25.1 |
37 | 16.666 | Octanal | Heptanal | ND | 181.1 ± 3.6 | ND | ND | ND |
38 | 16.946 | 1-hepten-3-one | 3-heptanone | ND | 9.7 ± 0.9 | ND | 8.7 ± 1.2 | 5.6 ± 1.1 |
39 | 17.205 | 2-heptanol | 1-heptanol | 11.4 ± 3.1 | 12.1 ± 0.4 | 9.9 ± 1.1 | 11.1 ± 3.2 | 12.3 ± 2.1 |
40 | 17.428 | (Z)-2-heptenal * | Heptanal | ND | ND | 22.1 ± 2.5 | 910.1 ± 43.4 | 131.3 ± 15.4 |
41 | 17.491 | 2,5-dimethyl-pyrazine | 2-methyl-pyrazine | 42.1 ± 8.2 | 10.1 ± 1.6 | 12.2 ± 3.1 | 3.3 ± 1.1 | ND |
42 | 17.618 | 2,6-methyl-pyrazine | 2-methyl-pyrazine | 9.1 ± 0.3 | ND | 8.5 ± 0.4 | 7.6 ± 0.3 | 5.7 ± 0.4 |
43 | 17.93 | 1-hexanol | 1-heptanol | 554.86 ± 21.6 | 30.3 ± 6.4 | ND | 11.2 ± 3.1 | ND |
44 | 18.358 | Esculetin | a-pinene | ND | ND | ND | 7.8 ± 1.1 | ND |
45 | 18.737 | dimethytrisulfide | - | Below LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
46 | 18.853 | Nonanal * | Heptanal | 952.1 ± 14.7 | 121.3 ± 15.4 | 869.4 ± 13.7 | 2521.5 ± 76.9 | 79.1 ± 4.9 |
47 | 19.005 | 2-ethyl-5-methyl-pyrazine | 2-methyl-pyrazine | ND | 6.9 ± 1.1 | 12.4 ± 1.8 | 50.6 ± 4.5 | ND |
48 | 19.276 | 2-nonanone | 3-octanone | 3.1 ± 0.5 | 7.8 ± 0.5 | 10.6 ± 0.9 | ND | ND |
49 | 19.845 | 2,6-diethyl-pyrazine | 2-methyl-pyrazine | 4.5 ± 0.6 | 6.6 ± 0.9 | 7.6 ± 1.1 | 8.4 ± 0.7 | ND |
50 | 19.966 | 1-octen-3-ol | 1-octanol | 23.4 ± 2.4 | 9.8 ± 1.1 | 12.2 ± 1.5 | 24.4 ± 3.9 | 11.6 ± 0.4 |
51 | 20.124 | 1-heptanol | 1-heptanol | 28.4 ± 5.6 | 11.6 ± 2.5 | 52.6 ± 3.2 | 71.9 ± 7.8 | 13.6 ± 1.7 |
52 | 20.413 | Furfural | Heptanal | ND | ND | 77.3 ± 9.4 | 140.1 ± 13.3 | ND |
53 | 20.535 | 2,6-diethyl Pyrazine | 2-methyl-pyrazine | ND | ND | 3.4 ± 0.7 | 1.2 ± 0.1 | 3.8 ± 0.4 |
54 | 20.845 | 2-benzothiazol | Benzaldehyde | 1.3 ± 0.4 | 5.6 ± 1.3 | 3.2 ± 1.3 | 4.4 ± 0.9 | 1.3 ± 0.9 |
55 | 20.895 | 2-ethyl-1-hexanol * | 1-heptanol | 40.2 ± 3.4 | 20.2 ± 5.5 | 10.7 ± 3.1 | 95.6 ± 2.3 | 82.3 ± 4.1 |
56 | 21.194 | 5’-amino-5’-deoxy adenosine * | - | >LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
21.858 | Benzaldehyde * | Benzaldehyde | 1503.5 ± 11.6 | 119.1 ± 11.5 | 153.5 ± 4.6 | 1933.1 ± 22.6 | 2327.5 ± 36.4 | |
58 | 21.945 | (E)-2-nonenal * | Heptanal | ND | ND | 126.5 ± 9.4 | 176.5 ± 15.1 | 102.1 ± 13.1 |
59 | 22.355 | 1-octanol * | 1-octanol | 10.3 ± 0.1 | 9.4 ± 0.7 | 10.1 ± 0.4 | 50.3 ± 5.1 | ND |
60 | 23.353 | 6-methyl-(E)-3,5-heptadien-2-one | 1-heptanone | >LOQ | >LOQ | 9.6 ± 0.2 | 11.5 ± 1.3 | >LOQ |
61 | 23.635 | 1-(2-pyridinyl)-ethanone * | 2-methyl-pyrazine | ND | 3.1 ± 0.4 | 4.8 ± 0.6 | 63.9 ± 10.1 | Below LOQ |
62 | 24.68 | Internal Standard | - | - | - | - | - | - |
63 | 24.758 | 4-methyl-benzaldehyde | Benzaldehyde | ND | ND | 3.4 ± 0.1 | ND | ND |
64 | 26.253 | Acetic acid methyl ester | - | >LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
65 | 26.424 | Methoxyphenyl Oxime | - | >LOQ | >LOQ | >LOQ | >LOQ | >LOQ |
66 | 27.770 | 1-Phenyl-1-butanone | 3-heptanone | 42.6 ± 4.4 | 109.2 ± 6.8 | 70.7 ± 2.4 | 96.1 ± 4.3 | 111.5 ± 14.6 |
67 | 28.022 | (E,E)-2,4-Decadienal | Heptanal | 90.4 ± 5.6 | ND | 81.6 ± 5.6 | 76.7 ± 6.5 | ND |
68 | 28.606 | 4-mehthy-2-phenyl1,3-dioxolane | - | ND | ND | >LOQ | >LOQ | ND |
69 | 29.313 | benzylalchocol * | 1-heptanol | ND | ND | ND | 190 ± 20 | ND |
70 | 30.090 | Phenyl ethyl alcohol * | 1-heptanol | 52.5 ± 5.1 | 52.3 ± 9.8 | 101.4 ± 12.4 | >LOQ | >LOQ |
71 | 35.259 | Nonadecane | Heptane | ND | ND | ND | 38.5 ± 5.6 | ND |
72 | 37.050 | Tricosane | Heptane | ND | ND | ND | 10.5 ± 1.9 | ND |
73 | 38.942 | Tetracosane | Heptane | ND | ND | ND | 17.4 ± 1.7 | ND |
74 | 41.164 | Hexacosane | Heptane | ND | ND | ND | ± 3.6 | ND |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manousi, N.; Zachariadis, G.A. Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules 2019, 24, 3091. https://doi.org/10.3390/molecules24173091
Manousi N, Zachariadis GA. Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules. 2019; 24(17):3091. https://doi.org/10.3390/molecules24173091
Chicago/Turabian StyleManousi, Natalia, and George A. Zachariadis. 2019. "Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis" Molecules 24, no. 17: 3091. https://doi.org/10.3390/molecules24173091
APA StyleManousi, N., & Zachariadis, G. A. (2019). Determination of Volatile Compounds in Nut-Based Milk Alternative Beverages by HS-SPME Prior to GC-MS Analysis. Molecules, 24(17), 3091. https://doi.org/10.3390/molecules24173091