Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application
Abstract
:1. Introduction
2. Chemical Composition
3. Pharmacology
3.1. Colorectal Cancer
3.2. Liver Cancer
3.3. Osteosarcoma
3.4. Other Cancers
3.5. Hepatopathy
3.6. Ischemic Stroke
4. Clinical Application
4.1. Colorectal Cancer
4.2. Liver Cancer
4.3. Hepatitis
4.4. Other Diseases
5. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Commission, C.P. Pharmacopoeia of the People’s Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2015; pp. 573–575. [Google Scholar]
- Lee, K.K.; Kwong, W.H.; Chau, F.T.; Yew, D.T.; Chan, W.Y. Pien Tze Huang protects the liver against carbon tetrachloride-induced damage. Pharm. Toxicol. 2002, 91, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.Y.; Chau, F.T.; Lee, K.K.; Kwong, W.H.; Yew, D.T. Substitution for natural musk in Pien Tze Huang does not affect its hepatoprotective activities. Hum. Exp. Toxicol. 2004, 23, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.Y.; Yu, E.X. Clinical analysis of the effect of Pien Tze Huang in treatment of 42 patients with moderate or advanced liver cancer. Shanghai J. Tradit. Chin. Med. 1994, 12, 4–5. [Google Scholar]
- Gu, Z.X. Preliminary Therapeutical observation of advanced colon cancer. Chin. Tradit. Pat. Med. 1993, 15, 23. [Google Scholar]
- Lai, C.J.; Tan, T.; Zeng, S.L.; Qi, L.W.; Liu, X.G.; Dong, X.; Li, P.; Liu, E.H. An integrated high resolution mass spectrometric data acquisition method for rapid screening of saponins in Panax notoginseng (Sanqi). J. Pharm. Biomed. Anal. 2015, 109, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.R.; Lee, J.P.; Chang, S.Y.; Shin, D.H.; Ahn, K.S.; Min, B.S.; Lee, H.K. Androstane alkaloids from musk of Moschus moschiferus. Chem. Pharm. Bull. 2002, 50, 663–664. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.J.; Xing, X.Y.; Xiao, X.H.; Wang, J.B.; Zhao, Y.L.; Yang, M.H. Multi-component analysis of bile acids in natural Calculus bovis and its substitutes by ultrasound-assisted solid-liquid extraction and UPLC-ELSD. Analyst 2012, 137, 5845–5853. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Ye, M.; Pan, D.L.; Miao, W.J.; Xiang, C.; Han, J.; Guo, D.A. Differentiation of various traditional Chinese medicines derived from animal bile and gallstone: Simultaneous determination of bile acids by liquid chromatography coupled with triple quadrupole mass spectrometry. J. Chromatography. A 2011, 1218, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xu, W.; Zhang, Y.; Liu, J.; Zhang, X.; Lin, J.; Peng, J.; Lu, J. Identification and quantification of the anti-inflammatory constituents in Pian-Tze-Huang by liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometry. J. Chromatogr. Banalyt. Technol. Biomed. Life Sci. 2016, 1027, 27–39. [Google Scholar] [CrossRef]
- Huang, M.; Zhao, H.; Xu, W.; Chu, K.; Hong, Z.; Peng, J.; Chen, L. Rapid simultaneous determination of twelve major components in Pien Tze Huang by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. J. Sep. Sci. 2013, 36, 3866–3873. [Google Scholar] [CrossRef]
- Li, S.X.; Mu, Y.; Zheng, F.Y. Influence of gastrointestinal digestion and edible plant combination on oral bioavailability of triterpene saponins, using a biomimetic digestion and absorption system and determination by HPLC. J. Agric. Food Chem. 2013, 61, 10599–10603. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhang, Y.; Zhou, C.; Tai, Y.; Zhang, X.; Liu, J.; Sha, M.; Huang, M.; Zhu, Y.; Peng, J.; et al. Simultaneous quantification six active compounds in rat plasma by UPLC-MS/MS and its application to a pharmacokinetic study of Pien-Tze-Huang. J. Chromatogr. Banalyt. Technol. Biomed. Life Sci. 2017, 1061–1062, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Xie, M. The determination of ginsenosides Rg1 in Pien Tze Huang by thin-layer chromatography. Chin. Herb. Med. 1997, 28, 536–537. [Google Scholar]
- Lai, Y.J.; Chen, J.P.; You, Y.J. Determination of Three Compounds in Pien Tze Huang by HPLC. Chin. Pharm. J. 2008, 43, 1906–1907. [Google Scholar]
- Zhang, J.; Ding, L.; Wang, B.; Ren, G.; Sun, A.; Deng, C.; Wei, X.; Mani, S.; Wang, Z.; Dou, W. Notoginsenoside R1 attenuates experimental inflammatory bowel disease via pregnane X receptor activation. J. Pharmacol. Exp. Ther. 2015, 352, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Gao, X.; Wang, C.; Huo, X.; Liu, Z.; Sun, H.; Yang, X.; Sun, P.; Ma, X.; Meng, Q.; et al. Hepatoprotective effect of ginsenoside Rg1 from Panax ginseng on carbon tetrachloride-induced acute liver injury by activating Nrf2 signaling pathway in mice. Environ. Toxicol. 2018, 33, 1050–1060. [Google Scholar] [CrossRef]
- Paul, S.; Shin, H.S.; Kang, S.C. Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2012, 50, 1354–1361. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.J.; Han, I.H.; Kim, Y.J.; Yamabe, N.; Lee, D.; Hwang, G.S.; Oh, M.; Choi, K.C.; Kim, S.N.; Ham, J.; et al. Anticarcinogenic effects of products of heat-processed ginsenoside Re, a major constituent of ginseng berry, on human gastric cancer cells. J. Agric. Food Chem. 2014, 62, 2830–2836. [Google Scholar] [CrossRef]
- Lim, K.H.; Lim, D.J.; Kim, J.H. Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: A hemodynamics approach. J. Ginseng Res. 2013, 37, 283–292. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, Y.; Rao, M.; Tang, M.; Dong, Z. Muscone Induces CYP1A2 and CYP3A4 Enzyme Expression in L02 Human Liver Cells and CYP1A2 and CYP3A11 Enzyme Expression in Kunming Mice. Pharmacology 2017, 99, 205–215. [Google Scholar] [CrossRef]
- Fernandez-Moriano, C.; Gonzalez-Burgos, E.; Iglesias, I.; Lozano, R.; Gomez-Serranillos, M.P. Evaluation of the adaptogenic potential exerted by ginsenosides Rb1 and Rg1 against oxidative stress-mediated neurotoxicity in an in vitro neuronal model. PLoS ONE 2017, 12, e0182933. [Google Scholar] [CrossRef]
- Lahiani, M.H.; Eassa, S.; Parnell, C.; Nima, Z.; Ghosh, A.; Biris, A.S.; Khodakovskaya, M.V. Carbon nanotubes as carriers of Panax ginseng metabolites and enhancers of ginsenosides Rb1 and Rg1 anti-cancer activity. Nanotechnology 2017, 28, 015101. [Google Scholar] [CrossRef]
- Radad, K.; Gille, G.; Moldzio, R.; Saito, H.; Ishige, K.; Rausch, W.D. Ginsenosides Rb1 and Rg1 effects on survival and neurite growth of MPP+-affected mesencephalic dopaminergic cells. J. Neural Transm. (Vienna Austria 1996) 2004, 111, 37–45. [Google Scholar] [CrossRef]
- Du, Y.; Gu, X.; Meng, H.; Aa, N.; Liu, S.; Peng, C.; Ge, Y.; Yang, Z. Muscone improves cardiac function in mice after myocardial infarction by alleviating cardiac macrophage-mediated chronic inflammation through inhibition of NF-kappaB and NLRP3 inflammasome. Am. J. Transl. Res. 2018, 10, 4235–4246. [Google Scholar]
- Shen, A.; Hong, F.; Liu, L.; Lin, J.; Wei, L.; Cai, Q.; Hong, Z.; Peng, J. Pien Tze Huang inhibits the proliferation of human colon carcinoma cells by arresting G1/S cell cycle progression. Oncol. Lett. 2012, 4, 767–770. [Google Scholar] [CrossRef]
- Liang, Q.Q.; Zhang, M.; Zhou, Q.; Shi, Q.; Wang, Y.J. Muscone protects vertebral end-plate degeneration by antiinflammatory property. Clin. Orthop. Relat. Res. 2010, 468, 1600–1610. [Google Scholar] [CrossRef]
- Lu, D.; Liu, J.; Zhao, W.; Li, P. Chronic toxicity of ginsenoside Re on Sprague-Dawley rats. J. Ethnopharmacol. 2012, 144, 656–663. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.M.; Wei, L.H.; Chen, Y.Q.; Liu, X.X.; Hong, Z.F.; Sferra, T.J.; Peng, J. Pien Tze Huang induced apoptosis in human colon cancer HT-29 cells is associated with regulation of the Bcl-2 family and activation of caspase 3. Chin. J. Integr. Med. 2011, 17, 685–690. [Google Scholar] [CrossRef]
- Zhuang, Q.; Hong, F.; Shen, A.; Zheng, L.; Zeng, J.; Lin, W.; Chen, Y.; Sferra, T.J.; Hong, Z.; Peng, J. Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model. Int. J. Oncol. 2012, 40, 1569–1574. [Google Scholar] [CrossRef]
- Shen, A.; Chen, Y.; Hong, F.; Lin, J.; Wei, L.; Hong, Z.; Sferra, T.J.; Peng, J. Pien Tze Huang suppresses IL-6-inducible STAT3 activation in human colon carcinoma cells through induction of SOCS3. Oncol. Rep. 2012, 28, 2125–2130. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Shen, A.; Qi, F.; Chu, J.; Cai, Q.; Sferra, T.J.; Peng, J.; Chen, Y. Pien Tze Huang inhibits the proliferation of colorectal cancer cells by increasing the expression of miR-34c-5p. Exp. Ther. Med. 2017, 14, 3901–3907. [Google Scholar] [CrossRef] [Green Version]
- Shen, A.; Chen, H.; Chen, Y.; Lin, J.; Lin, W.; Liu, L.; Sferra, T.J.; Peng, J. Pien Tze Huang Overcomes Multidrug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells via Suppression of TGF-beta Pathway. Evid.-Based Complement. Altern. Med. 2014, 2014, 679436. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, A.; Liu, L.; Chen, Y.; Chu, J.; Cai, Q.; Qi, F.; Sferra, T.J.; Peng, J. Pien Tze Huang induces apoptosis and inhibits proliferation of 5-fluorouracil-resistant colorectal carcinoma cells via increasing miR-22 expression. Exp. Ther. Med. 2017, 14, 3533–3540. [Google Scholar] [CrossRef]
- Fu, C.; Chu, J.; Shen, A.; Liu, L.; Chen, H.; Lin, J.; Sferra, T.J.; Chen, Y.; Peng, J. Pien Tze Huang alleviates 5-fluorouracil-induced intestinal mucositis in CT-26 tumor-bearing mice. Exp. Ther. Med. 2017, 14, 2291–2297. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.H.; Zhu, D.Z. Clinical observation of Pien Tze Huang combined with chemotherapy in the treatment of advacnced colon cancer. Fujian J. TCM Fubruary 2012, 43, 8–9. [Google Scholar]
- Huang, Z.; Zi, Y.; Lu, H. Clinical observation of Pien Tze Huang combined with XELOX chemotherapy regimen in the treatment of advacnced colon cancer. Fujian J. TCM Fubruary 2014, 45, 30–31. [Google Scholar]
- Shen, A.L.; Hong, F.; Liu, L.Y.; Lin, J.M.; Zhuang, Q.C.; Hong, Z.F.; Peng, J. Effects of Pien Tze Huang on angiogenesis in vivo and in vitro. Chin. J. Integr. Med. 2012, 18, 431–436. [Google Scholar] [CrossRef]
- Li, L.; Shen, A.; Chu, J.; Sferra, T.J.; Sankararaman, S.; Ke, X.; Chen, Y.; Peng, J. Pien Tze Huang ameliorates DSS-induced colonic inflammation in a mouse colitis model through inhibition of the IL-6/STAT3 pathway. Mol. Med. Rep. 2018, 1113–1119. [Google Scholar] [CrossRef]
- Shen, A.; Lin, W.; Chen, Y.; Liu, L.; Chen, H.; Zhuang, Q.; Lin, J.; Sferra, T.J.; Peng, J. Pien Tze Huang inhibits metastasis of human colorectal carcinoma cells via modulation of TGF-beta1/ZEB/miR-200 signaling network. Int. J. Oncol. 2015, 46, 685–690. [Google Scholar] [CrossRef]
- Lin, W.; Zhuang, Q.; Zheng, L.; Cao, Z.; Shen, A.; Li, Q.; Fu, C.; Feng, J.; Peng, J. Pien Tze Huang inhibits liver metastasis by targeting TGF-beta signaling in an orthotopic model of colorectal cancer. Oncol. Rep. 2015, 33, 1922–1928. [Google Scholar] [CrossRef]
- Chen, H.; Shen, A.; Zhang, Y.; Chen, Y.; Lin, J.; Lin, W.; Sferra, T.; Peng, J. Pien Tze Huang inhibits hypoxia-induced epithelial-mesenchymal transition in human colon carcinoma cells through suppression of the HIF-1 pathway. Exp. Ther. Med. 2014, 7, 1237–1242. [Google Scholar] [CrossRef]
- Lin, J.; Feng, J.; Jin, Y.; Yan, Z.; Lai, Z.; Peng, J. Pien Tze Huang suppresses VEGF-C-mediated lymphangiogenesis in colorectal cancer. Oncol. Rep. 2016, 36, 3568–3576. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Feng, J.; Zhang, Y.; Shen, A.; Chen, Y.; Lin, J.; Lin, W.; Sferra, T.J.; Peng, J. Pien Tze Huang Inhibits Hypoxia-Induced Angiogenesis via HIF-1 alpha /VEGF-A Pathway in Colorectal Cancer. Evid.-Based Complement. Altern. Med. 2015, 2015, 454279. [Google Scholar] [CrossRef]
- Shen, A.; Lin, J.; Chen, Y.; Lin, W.; Liu, L.; Hong, Z.; Sferra, T.J.; Peng, J. Pien Tze Huang inhibits tumor angiogenesis in a mouse model of colorectal cancer via suppression of multiple cellular pathways. Oncol. Rep. 2013, 30, 1701–1706. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Chen, P.; Chen, Y.; Shen, A.; Chen, H.; Lin, W.; Hong, Z.; Sferra, T.J.; Peng, J. Pien Tze Huang suppresses the stem-like side population in colorectal cancer cells. Mol. Med. Rep. 2014, 9, 261–266. [Google Scholar] [CrossRef]
- Qi, F.; Wei, L.; Shen, A.; Chen, Y.; Lin, J.; Chu, J.; Cai, Q.; Pan, J.; Peng, J. Pien Tze Huang inhibits the proliferation, and induces the apoptosis and differentiation of colorectal cancer stem cells via suppression of the Notch1 pathway. Oncol. Rep. 2016, 35, 511–517. [Google Scholar] [CrossRef]
- Wei, L.H.; Qi, F.; Peng, J.; Yan, M.L.; Qiu, F.N. Effects of pien tze huang on proliferation and apoptosis of liver cancer stem cells. Fujian J. TCM 2017, 48, 27–30. [Google Scholar]
- Guo, P.L.; Liu, J.H.; Yu, B.Y. Study on antitumor effect of Pien Tze Huang in vitro. Drug Eval. Res. 2011, 34, 171–173. [Google Scholar]
- Fu, Y.; Zhang, L.; Hong, Z.; Zheng, H.; Li, N.; Gao, H.; Chen, B.; Zhao, Y. Methanolic Extract of Pien Tze Huang Induces Apoptosis Signaling in Human Osteosarcoma MG63 Cells via Multiple Pathways. Molecules 2016, 21, 283. [Google Scholar] [CrossRef]
- Ren, S.S.; Yuan, F.; Liu, Y.H.; Zhou, L.T.; Li, J. Effect of p27 gene combined with Pientzehuang on tumor growth in osteosarcoma-bearing nude mice. Chin. J. Integr. Med. 2015, 21, 830–836. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.H.; Niu, S.S.; Liu, J.N.; Zhang, L. Pien Tze Huang induces apoptosis in multi-drugresistant U2OS/ADM cells via downregulation of Bcl2, survivin and P-gp and upregulation of Bax. Oncology reports 2014, 31, 763–770. [Google Scholar] [CrossRef]
- Lu, L.; Wai, M.S.; Yew, D.T.; Mak, Y.T. Pien Tze Huang, a composite Chinese traditional herbal extract, affects survival of neuroblastoma cells. Int. J. Neurosci. 2009, 119, 255–262. [Google Scholar] [CrossRef]
- He, F.; Wu, H.N.; Cai, M.Y.; Li, C.P.; Zhang, X.; Wan, Q.; Tang, S.B.; Cheng, J.D. Inhibition of ovarian cancer cell proliferation by Pien Tze Huang via the AKT-mTOR pathway. Oncol. Lett. 2014, 7, 2047–2052. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Qi, F.; Shen, A.L.; Chu, J.F.; Sferra, T.J.; Chen, Y.Q.; Peng, J. Pien Tze Huang Overcomes Doxorubicin Resistance and Inhibits Epithelial-Mesenchymal Transition in MCF-7/ADR Cells. Chin. J. Integr. Med. 2018. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Deng, L.; Yu, J.; Wang, K.; Zhang, X.; Ji, G.; Li, F. Pien Tze Huang ameliorates liver injury by inhibiting the PERK/eIF2alpha signaling pathway in alcohol and high-fat diet rats. Acta Histochem. 2018, 120, 578–585. [Google Scholar] [CrossRef]
- Deng, L.Y.; Li, F.H.; Ji, G.; Cao, Y.C.; Zhang, X. Effect Study of Pien Tze Huang on nonalcoholic fatty liver disease in rats. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 124–128. [Google Scholar]
- Zhang, L.; Lam, W.; Lü, L.; Wang, C.; Wong, Y.; Lam, L.; Tang, H.; Wai, M.; Wang, M.; Kwong, W.; et al. Protective effects and potential mechanisms of Pien Tze Huang on cerebral chronic ischemia and hypertensive stroke. Chin. Med. 2010, 5. [Google Scholar] [CrossRef]
- Zhang, L.; Lam, W.P.; Lu, L.; J Wang, Y.X.J.; W Wong, Y.; H Lam, L.; C Tang, H.; S Wai, M.; T Mak, Y.; Wang, M.; et al. How Would Composite Traditional Chinese Medicine Protect the Brain—An Example of the Composite Formula “Pien Tze Huang”. Curr. Med. Chem. 2011, 18, 3590–3594. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Tang, S.; Yu, L.; Zhao, Y.; Ren, Q.; Huang, X.; Xu, W.; Huang, M.; Peng, J. Pien-Tze-Huang protects cerebral ischemic injury by inhibiting neuronal apoptosis in acute ischemic stroke rats. J. Ethnopharmacol. 2018, 219, 117–125. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Yu, E.X. Clinical analysis of 42 cases of advanced liver cancer treated with Pien Tze Huang. Shanghai J. Tradit. Chin. Med. 1994, 4–5. [Google Scholar]
- Zhao, S.L.; Pan, J. A clinical trial of combined use of Pien Tze Huang and chemotherapy in the treatment of primary liver cancer. Med. World 2006, 49–51. [Google Scholar]
- Meng, L.P.; Gu, X.F. Clinical observation of the changes of immune indexes of primary liver cancer treated with Pien Tze Huang and TACE. Jiu Jiang Med. J. 2008, 1, 31–33. [Google Scholar]
- Zhong, R.; Duan, Z.P.; Chen, Y.; Zhen, S.J.; Kong, M.; Xu, M.M. Clinical study of Pien tze huang in treatment of chronic hepatitis B. Chin. J. Gastroenterol. Hepatol. 2017, 26, 1290–1294. [Google Scholar]
- He, Y.L.; Chen, H.M.; Zhou, H.A. Clinical study of Pianzaihuang in the treatment of recurrent aphthous ulcer. Chin J. Clin. Pharm. 2015, 31, 780–783. [Google Scholar]
- Lin, G.Q.; Chen, Q.Q.; Zeng, G.Q.; Chen, W.L. Clinical observation of Pianzaihuang in the treatment of recurrent aphthous ulcer. Shenzheng J. Integr. Med. 2017, 27, 21–24. [Google Scholar]
- Lian, C.Y.; Liu, S.F.; Chen, N.Q. Clinical observation of Pien Tze Huang in the treatment of phlebitis induced by amiodarone. Today Nurse 2012, 3, 94–96. [Google Scholar]
Cancer Types | Cell Lines | IC50 | Reference |
---|---|---|---|
Colorectal cancer | HT-29 | 0.65 mg/mL/24 h | [30] |
Caco-2 | >1 mg/mL/24 h | [26] | |
CT-26 | 0.75 mg/mL/24 h | [42] | |
HCT-8 | 0.25-0.5 mg/mL/6 h | [43] | |
0.25-0.5 mg/mL/24 h | [41] | ||
HCT-8/5-Fu | >0.25 mg/mL/48 h | [34] | |
SW480 SP | 0.75 mg/mL/48 h | [48] | |
HCT-116 | 0.75 mg/mL/24 h | [44] | |
0.5-0.75 mg/mL/48 h | [44] | ||
SW620 | <0.75 mg/mL/24 h | [44] | |
>0.5 mg/mL/48 h | [44] | ||
Neuroblastoma | SH-SY5Y | <400 μg/mL/24 h | [54] |
NIH-3T3 | >400 μg/mL/24 h | [54] | |
Osteosarcoma | U2OS | 1.2 mg/mL/48 h | [53] |
U2OS/ADM | >1.2 mg/mL/24 h | [53] | |
<1.2 mg/mL/48 h | [53] | ||
0.8-1.2 mg/mL/72 h | [53] | ||
MG-63 | 500-750 μg/mL/24 h | [51] | |
Ovarian cancer | OVCAR-3 | >1000 mg/mL/24 h | [55] |
Liver cancer | BEL-7402 | >0.75 mg/mL/48 h | [49] |
0.5-0.57 mg/mL/72 h | [49] | ||
Breast cancer | MCF-7/ADM | >0.75 mg/mL/48 h | [56] |
Disease Type | Animal Model | Method | Effects | Mechanisms | Reference |
---|---|---|---|---|---|
Colorectal cancer | HT-29 tumor-bearing xenograft mice | 234 mg/kg/d, 5 days a week for 16 days | reduced tumor volume and tumor weight without apparent adverse effect, inhibited tumor cell proliferation, promoted apoptosis | ↑Bax, Bax/Bcl-2; ↓Cyclin D1, CDK4, Bcl-2, p-STAT3 | [31] |
CT-26 tumor-bearing xenograft mice | 250 mg/kg/d for 4 days | alleviated the severity of 5-FU-induced diarrhea and morphological intestinal damages, inhibited cell apoptosis in the intestinal crypt | ↑Bax, Bax/Bcl-2; ↓Bcl-2, | [36] | |
HT-29 tumor-bearing xenograft mice | 234 mg/kg/d, 5 days a week for 16 days | suppressed tumor volume and weight, inhibited tumor angiogenesis | ↓p-STAT3, p-ERK, p-Akt, p-JNK, p-p38, VEGF-A, VEGFR2, bFGF, bFGFR, iNOS, eNOS | [46] | |
CT-26 cells liver metastasis animal model in athymic male nude mice | 234 mg/kg/d for 14 days | inhibited tumor liver metastasis without apparent toxicity, inhibited EMT | ↑E-cadherin; ↓N-cadherin, TGF-β, p-Smad2/3, Smad4 | [42] | |
Osteosarcoma | Saos-2 tumor-bearing xenograft mice | 0.234 mg/g twice daily for 6 weeks combined with p27 gene once for 3 days | inhibited tumor growth | ↑p27 | [52] |
Hepatic diseases | acute hepatitis mouse induced by carbon tetrachloride | 0.5 g/kg three times over 36 h | ameliorated hepatic pathology | ↑AP1, NF-κB; ↓ALT | [2] |
alcohol and high-fat diet rats | 0.5, 1, and 2g/kg/d for 3 weeks | ameliorated the defects in hepatic function, hepatic pathology and the impairment in lipid metabolism | ↓GRP78, GRP9, p-eIF2a | [57] | |
nonalcoholic fatty liver rats | 0. 5, 1.0, 2.0 g/kg/d for 4 weeks | improved liver function, lowered blood lipid | ↑SREBP-1c mRNA expression; ↓FXR, SHP mRNA expression | [58] | |
Ischemic stroke | SHR rats and stroke prone SHR rats | 18 mg/kg/d for 3 months | reduced cell death in hippocampus and cerebellum by chronic ischemia and hypertensive stroke | ↓QCR2, cleaved caspase-3 | [59] |
MCAO rats | 180 mg/kg/d for 4 days | reduced cerebral infarct volume, improved neurological deficit, attenuated inflammatory response, inhibited neuronal apoptosis | ↑NeuN, cytosolic Cyt C, Bax, P53,cleaved caspase-3; ↓IL-1β, IL-6, TNF-α, Bcl-xl, p-AKT, p-GSK-3β, caspase-9, mitochondrial Cyt C | [61] |
Disease Type | Dose and Course of Treatment | Combined Medication | PTH/Control (n) | Efficacy | Side Effects | Reference |
---|---|---|---|---|---|---|
Advanced colorectal cancer | 1.8 g/d, p.o., 28 days | - | 25/0 | improved clinical symptoms and life quality | N/A | [5] |
1.2 g/d, p.o., 24 weeks | 5-FU (300 mg/m2/d, i.v., 2 days), oxaliplatin (85 mg/m2/d, i.v., 2 days), leucovorin (200 mg/m2/d, i.v., 1 day) | 24/23 | had better short-term efficacy, reduced the toxicity and side effects of chemotherapy, and improved life qualities | N/A | [38] | |
1.2 g/d, p.o., 24 weeks | oxaliplatin (130 mg/m2/d, i.v., 1 day) and capecitabine (1000 mg/m2/d, p.o.) | 34/34 | improved life quality, reduced the toxicity and side effects of chemotherapy | N/A | [37] | |
Moderate or advanced liver cancer | 1.0 g/d, p.o.,30 days | routine radiotherapy or chemotherapy | 42/0 | achieved lower exacerbation rate, improved clinical symptoms and life quality compared with single chemotherapy | N/A | [62] |
Primary liver cancer | 1.8 g/d, p.o.,56 days | routine interventional chemotherapy | 102/105 | reduced tumor size, improved life quality, relieved pain, reduced the toxicity and side effects of chemotherapy | N/A | [63] |
1.8 g/d, p.o.,56 days | transcatheter arterial chemoembolization | 20/20 | increased NK, CD3, CD4 and CD4/CD8 levels | N/A | [64] | |
Chronic hepatitis B | 1.8 g/d, p.o., 3 months | polyenephosphatidylcholine (1368 mg/d, p.o.) | 47/47 | improved digestive tract symptoms, protected liver function | N/A | [65] |
Recurrent aphthous ulcer | 1.5 g/d, p.o. | Niuhuang Jiedu Pills (2.43 g/d, p.o.) | 31/35 | accelerated the healing of recurrent aphthous ulcer, decreased the risk of recurrence | N/A | [66] |
2.13 g/d, p.o. | Niuhuang Jiedu Pills (2.13 g/d, p.o.) | 37/37 | accelerated the healing of recurrent aphthous ulcer, decreased the risk of recurrence | N/A | [67] | |
Phlebitis induced by amiodarone | 0.75 g/d, external treatment, 4 days | 50% magnesium sulfate | 31/31 | improved redness, swelling, heat, pain | N/A | [68] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zhang, Y.; Zhang, X.; Chen, X.; Wang, Y.; Lu, J.; Huang, M. Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application. Molecules 2019, 24, 3274. https://doi.org/10.3390/molecules24183274
Huang L, Zhang Y, Zhang X, Chen X, Wang Y, Lu J, Huang M. Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application. Molecules. 2019; 24(18):3274. https://doi.org/10.3390/molecules24183274
Chicago/Turabian StyleHuang, Lili, Yiping Zhang, Xiaoqin Zhang, Xiuping Chen, Yitao Wang, Jinjian Lu, and Mingqing Huang. 2019. "Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application" Molecules 24, no. 18: 3274. https://doi.org/10.3390/molecules24183274
APA StyleHuang, L., Zhang, Y., Zhang, X., Chen, X., Wang, Y., Lu, J., & Huang, M. (2019). Therapeutic Potential of Pien-Tze-Huang: A Review on Its Chemical Composition, Pharmacology, and Clinical Application. Molecules, 24(18), 3274. https://doi.org/10.3390/molecules24183274